forked from rapidsai/cuml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
build.sh
executable file
·198 lines (168 loc) · 5.94 KB
/
build.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/bin/bash
# Copyright (c) 2019-2020, NVIDIA CORPORATION.
# cuml build script
# This script is used to build the component(s) in this repo from
# source, and can be called with various options to customize the
# build as needed (see the help output for details)
# Abort script on first error
set -e
NUMARGS=$#
ARGS=$*
# NOTE: ensure all dir changes are relative to the location of this
# script, and that this script resides in the repo dir!
REPODIR=$(cd $(dirname $0); pwd)
VALIDARGS="clean libcuml cuml prims bench prims-bench -v -g -n --allgpuarch --singlegpu --nvtx --show_depr_warn -h --help"
HELP="$0 [<target> ...] [<flag> ...]
where <target> is:
clean - remove all existing build artifacts and configuration (start over)
libcuml - build the cuml C++ code only. Also builds the C-wrapper library
around the C++ code.
cuml - build the cuml Python package
prims - build the ML prims tests
bench - build the cuml C++ benchmark
prims-bench - build the ml-prims C++ benchmark
and <flag> is:
-v - verbose build mode
-g - build for debug
-n - no install step
--allgpuarch - build for all supported GPU architectures
--singlegpu - Build cuml without libcumlprims based multigpu algorithms.
--nvtx - Enable nvtx for profiling support
--show_depr_warn - show cmake deprecation warnings
-h - print this text
default action (no args) is to build and install 'libcuml', 'cuml', and 'prims' targets only for the detected GPU arch
"
LIBCUML_BUILD_DIR=${REPODIR}/cpp/build
CUML_BUILD_DIR=${REPODIR}/python/build
PYTHON_DEPS_CLONE=${REPODIR}/python/external_repositories
BUILD_DIRS="${LIBCUML_BUILD_DIR} ${CUML_BUILD_DIR} ${PYTHON_DEPS_CLONE}"
# Set defaults for vars modified by flags to this script
VERBOSE=""
BUILD_TYPE=Release
INSTALL_TARGET=install
BUILD_ALL_GPU_ARCH=0
SINGLEGPU=""
NVTX=OFF
CLEAN=0
BUILD_DISABLE_DEPRECATION_WARNING=ON
# Set defaults for vars that may not have been defined externally
# FIXME: if INSTALL_PREFIX is not set, check PREFIX, then check
# CONDA_PREFIX, but there is no fallback from there!
INSTALL_PREFIX=${INSTALL_PREFIX:=${PREFIX:=${CONDA_PREFIX}}}
PARALLEL_LEVEL=${PARALLEL_LEVEL:=""}
BUILD_ABI=${BUILD_ABI:=ON}
function hasArg {
(( ${NUMARGS} != 0 )) && (echo " ${ARGS} " | grep -q " $1 ")
}
if hasArg -h || hasArg --help; then
echo "${HELP}"
exit 0
fi
# Check for valid usage
if (( ${NUMARGS} != 0 )); then
for a in ${ARGS}; do
if ! (echo " ${VALIDARGS} " | grep -q " ${a} "); then
echo "Invalid option: ${a}"
exit 1
fi
done
fi
# Process flags
if hasArg -v; then
VERBOSE=1
fi
if hasArg -g; then
BUILD_TYPE=Debug
fi
if hasArg -n; then
INSTALL_TARGET=""
fi
if hasArg --allgpuarch; then
BUILD_ALL_GPU_ARCH=1
fi
if hasArg --singlegpu; then
SINGLEGPU="--singlegpu"
fi
if hasArg --nvtx; then
NVTX=ON
fi
if hasArg --show_depr_warn; then
BUILD_DISABLE_DEPRECATION_WARNING=OFF
fi
if hasArg clean; then
CLEAN=1
fi
# If clean given, run it prior to any other steps
if (( ${CLEAN} == 1 )); then
# If the dirs to clean are mounted dirs in a container, the
# contents should be removed but the mounted dirs will remain.
# The find removes all contents but leaves the dirs, the rmdir
# attempts to remove the dirs but can fail safely.
for bd in ${BUILD_DIRS}; do
if [ -d ${bd} ]; then
find ${bd} -mindepth 1 -delete
rmdir ${bd} || true
fi
done
cd ${REPODIR}/python
python setup.py clean --all
cd ${REPODIR}
fi
################################################################################
# Configure for building all C++ targets
if (( ${NUMARGS} == 0 )) || hasArg libcuml || hasArg prims || hasArg bench || hasArg prims-bench; then
if (( ${BUILD_ALL_GPU_ARCH} == 0 )); then
GPU_ARCH=""
echo "Building for the architecture of the GPU in the system..."
else
GPU_ARCH="-DGPU_ARCHS=ALL"
echo "Building for *ALL* supported GPU architectures..."
fi
mkdir -p ${LIBCUML_BUILD_DIR}
cd ${LIBCUML_BUILD_DIR}
cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_PREFIX} \
-DCMAKE_CXX11_ABI=${BUILD_ABI} \
-DBLAS_LIBRARIES=${INSTALL_PREFIX}/lib/libopenblas.so.0 \
${GPU_ARCH} \
-DCMAKE_BUILD_TYPE=${BUILD_TYPE} \
-DBUILD_CUML_C_LIBRARY=ON \
-DBUILD_CUML_STD_COMMS=ON \
-DWITH_UCX=ON \
-DBUILD_CUML_MPI_COMMS=OFF \
-DNVTX=${NVTX} \
-DPARALLEL_LEVEL=${PARALLEL_LEVEL} \
-DNCCL_PATH=${INSTALL_PREFIX} \
-DDISABLE_DEPRECATION_WARNING=${BUILD_DISABLE_DEPRECATION_WARNING} \
-DCMAKE_PREFIX_PATH=${INSTALL_PREFIX} ..
fi
# Run all make targets at once
MAKE_TARGETS=
if hasArg libcuml; then
MAKE_TARGETS="${MAKE_TARGETS}cuml++ cuml ml ml_mg"
fi
if hasArg prims; then
MAKE_TARGETS="${MAKE_TARGETS} prims"
fi
if hasArg bench; then
MAKE_TARGETS="${MAKE_TARGETS} sg_benchmark"
fi
if hasArg prims-bench; then
MAKE_TARGETS="${MAKE_TARGETS} prims_benchmark"
fi
# If `./build.sh cuml` is called, don't build C/C++ components
if (( ${NUMARGS} == 0 )) || hasArg libcuml || hasArg prims || hasArg bench; then
# If there are no targets specified when calling build.sh, it will
# just call `make -j`. This avoids a lot of extra printing
cd ${LIBCUML_BUILD_DIR}
make -j${PARALLEL_LEVEL} ${MAKE_TARGETS} VERBOSE=${VERBOSE} ${INSTALL_TARGET}
fi
# Build and (optionally) install the cuml Python package
if (( ${NUMARGS} == 0 )) || hasArg cuml; then
cd ${REPODIR}/python
if [[ ${INSTALL_TARGET} != "" ]]; then
python setup.py build_ext -j${PARALLEL_LEVEL:-1} --inplace ${SINGLEGPU}
python setup.py install --single-version-externally-managed --record=record.txt ${SINGLEGPU}
else
python setup.py build_ext -j${PARALLEL_LEVEL:-1} --inplace --library-dir=${LIBCUML_BUILD_DIR} ${SINGLEGPU}
fi
fi