-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgender_model.py
200 lines (154 loc) · 9.78 KB
/
gender_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
from tensorflow.contrib import slim
import optimizer
from classifier import train, save_variables_and_metagraph
def gender_model(embeddings, weight_decay1, phase_train=True):
def ResBlock(net, num_outputs, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
with tf.variable_scope(scope, "Res-Block", [net], reuse=reuse):
up = slim.fully_connected(net, num_outputs=num_outputs, scope="hidden_1")
up = slim.fully_connected(up, num_outputs=num_outputs, activation_fn=None,
normalizer_fn=None, scope="hidden_2")
net = tf.identity(net + scale * up, name="residual_add")
if activation_fn:
net = tf.nn.relu(net)
return net
with tf.variable_scope("gender_model"):
with slim.arg_scope([slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
biases_initializer=tf.constant_initializer(),
normalizer_fn=slim.batch_norm,
normalizer_params={
'decay': 0.995,
'epsilon': 0.001,
'updates_collections': None,
'variables_collections': [tf.GraphKeys.TRAINABLE_VARIABLES],
},
weights_regularizer=slim.l1_regularizer(weight_decay1)):
with slim.arg_scope([slim.batch_norm], is_training=phase_train):
net = slim.repeat(embeddings, 3, ResBlock, num_outputs=128)
net = slim.fully_connected(net, num_outputs=64, scope="change-cells-1")
net = slim.repeat(net, 3, ResBlock, num_outputs=64)
net = slim.fully_connected(net, num_outputs=32, scope="change-cells-2")
net = slim.repeat(net, 6, ResBlock, num_outputs=32)
net = slim.fully_connected(net, num_outputs=16, scope="change-cells-3")
net = slim.repeat(net, 8, ResBlock, num_outputs=16)
net = slim.fully_connected(net, num_outputs=8, scope="change-cells-4")
net = slim.repeat(net, 6, ResBlock, num_outputs=8)
net = slim.fully_connected(net, num_outputs=4, scope="change-cells-5")
net = slim.repeat(net, 3, ResBlock, num_outputs=4)
# net = slim.fully_connected(embeddings, num_outputs=128, scope="hidden_1")
# net = slim.fully_connected(net, num_outputs=128, scope="hidden_2")
# net = slim.fully_connected(net, num_outputs=128, scope="hidden_3")
#
# net = slim.fully_connected(net, num_outputs=64, scope="hidden_4")
# net = slim.fully_connected(net, num_outputs=64, scope="hidden_5")
# net = slim.fully_connected(net, num_outputs=32, scope="hidden_6")
# net = slim.fully_connected(net, num_outputs=32, scope="hidden_7")
# net = slim.fully_connected(net, num_outputs=32, scope="hidden_8")
#
# net = slim.fully_connected(net, num_outputs=16, scope="hidden_9")
# net = slim.fully_connected(net, num_outputs=16, scope="hidden_10")
# net = slim.fully_connected(net, num_outputs=16, scope="hidden_11")
# net = slim.fully_connected(net, num_outputs=16, scope="hidden_12")
# net = slim.fully_connected(net, num_outputs=16, scope="hidden_13")
# net = slim.fully_connected(net, num_outputs=16, scope="hidden_14")
#
# net = slim.fully_connected(net, num_outputs=8, scope="hidden_15")
# net = slim.fully_connected(net, num_outputs=8, scope="hidden_16")
# net = slim.fully_connected(net, num_outputs=8, scope="hidden_17")
# net = slim.fully_connected(net, num_outputs=4, scope="hidden_18")
# net = slim.fully_connected(net, num_outputs=4, scope="hidden_19")
# net = slim.fully_connected(net, num_outputs=4, scope="hidden_20")
# net = slim.fully_connected(net, num_outputs=2, activation_fn=None, normalizer_fn=None, scope="logits")
net = slim.fully_connected(net, num_outputs=2, activation_fn=None, normalizer_fn=None, scope="logits")
return net
def gender_classifier(embedding_size, weight_decay_l1, learning_rate, learning_rate_decay_step,
learning_rate_decay_factor, optimizer_name, epoch_size, batch_size,
log_dir, model_dir, subdir, image_database):
_, train_embeddings, _, train_genders = image_database.train_data
_, valid_embeddings, _, valid_genders = image_database.valid_data
_, test_embeddings, _, test_genders = image_database.test_data
print("The training number of female: %d" % np.sum(train_genders == 0))
print("The training number of male: %d" % np.sum(train_genders == 1))
print("The valid number of female: %d" % np.sum(valid_genders == 0))
print("The valid number of male: %d" % np.sum(valid_genders == 1))
with tf.Graph().as_default() as graph:
labels_placeholder = tf.placeholder(dtype=tf.int64, shape=[None], name="gender_label")
embeddings_placeholder = tf.placeholder(dtype=tf.float32, shape=[None, embedding_size],
name="embeddings_placeholder")
phase_train_placeholder = tf.placeholder(dtype=tf.bool, name="phase_gender_train")
global_step = tf.Variable(0, trainable=False)
logits = gender_model(embeddings_placeholder, weight_decay_l1, phase_train_placeholder)
logits = tf.identity(logits, "logits")
predict = tf.argmax(logits, 1, name="predict")
correct = tf.equal(predict, labels_placeholder, name="correct")
correct_sum = tf.reduce_sum(tf.cast(correct, "float"))
# accuracy_tensor = tf.reduce_mean(tf.cast(correct, "float"))
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels_placeholder, logits=logits,
name="softmax_cross_entropy")
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy_loss')
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_losses = tf.add_n([cross_entropy_mean] + regularization_losses)
update_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "gender_model")
learning_rate = tf.train.exponential_decay(learning_rate, global_step, learning_rate_decay_step,
learning_rate_decay_factor, True)
tf.summary.scalar("learning_rate", learning_rate)
train_op = optimizer.train(total_loss=total_losses,
global_step=global_step,
optimizer=optimizer_name,
learning_rate=learning_rate,
moving_average_decay=0.99,
update_gradient_vars=update_vars,
record_var=True)
saver = tf.train.Saver(update_vars, max_to_keep=3)
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(log_dir, graph)
session = tf.Session(graph=graph)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
epoch = 0
while epoch < epoch_size:
gs = session.run(global_step, feed_dict=None)
train(session, train_embeddings, train_genders, embeddings_placeholder, labels_placeholder,
phase_train_placeholder, global_step, total_losses, learning_rate, train_op, summary_op,
summary_writer, batch_size)
print("saving the model parameters...")
save_variables_and_metagraph(session, saver, model_dir, subdir, gs)
print("evaluating...")
gender_evaluate(session, valid_embeddings, valid_genders, embeddings_placeholder, labels_placeholder,
phase_train_placeholder, gs, epoch, correct_sum, summary_writer)
epoch += 1
session.close()
def gender_evaluate(session, valid_embeddings, valid_genders, embeddings_placeholder, labels_placeholder,
phase_train_placeholder, global_step, epoch, correct_sum, summary_writer):
summary = tf.Summary()
male_indexes = np.where(valid_genders == 1)[0]
female_indexes = np.where(valid_genders == 0)[0]
nrof_male = len(male_indexes)
nrof_female = len(female_indexes)
tp = session.run(correct_sum, feed_dict={
embeddings_placeholder: valid_embeddings[male_indexes],
labels_placeholder: valid_genders[male_indexes],
phase_train_placeholder: False
})
fn = nrof_male - tp
tn = session.run(correct_sum, feed_dict={
embeddings_placeholder: valid_embeddings[female_indexes],
labels_placeholder: valid_genders[female_indexes],
phase_train_placeholder: False
})
fp = nrof_female - tn
accuracy = float(tp + tn) / len(valid_embeddings)
tpr = float(tp) / float(nrof_male)
fpr = float(fp) / float(nrof_female)
tnr = float(tn) / float(nrof_female)
fnr = float(fn) / float(nrof_male)
summary.value.add(tag="evaluate/TPR", simple_value=tpr)
summary.value.add(tag="evaluate/FPR", simple_value=fpr)
summary.value.add(tag="evaluate/TNR", simple_value=tnr)
summary.value.add(tag="evaluate/FNR", simple_value=fnr)
summary.value.add(tag="evaluate/accuracy", simple_value=accuracy)
summary_writer.add_summary(summary, global_step)
print("\t\t Epoch: %3d, Valid Accuracy: %1.4f" % (epoch, accuracy))