-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtime_freqplot.m
92 lines (68 loc) · 3.59 KB
/
time_freqplot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
%plot the time freq for each :
imgstoreloc='C:\Users\PROVOST\Google Drive ([email protected])\scripts\sasicaout\sasica\wicaOn\pipeout\timefreq\';
if ~isdir(imgstoreloc)
mkdir(imgstoreloc);
end
freqband=[13 30]; %beta band
nFrex = ((diff(freqband)*2)-1);
frex = linspace(freqband(1),freqband(2),nFrex);
for wueno=1:currwue
nsess=length(AllEEGData_complete_reshaped(wueno).sessno);
min_posttrlen1=Inf;min_pretrlen1=Inf;
for j=1:nsess
ntrials=length(AllEEGData_complete_reshaped(wueno).sessno(j).trial);
posttrlen=(events_onoffsetkin_data(wueno).sessno(sessno).data(end,:))-...
(events_onoffsetkin_data(wueno).sessno(sessno).data(2,:));
min_posttrlen=min(posttrlen);
if min_posttrlen<min_posttrlen1
min_posttrlen1=min_posttrlen;
end
pretrlen=(events_onoffsetkin_data(wueno).sessno(sessno).data(2,:))-...
(events_onoffsetkin_data(wueno).sessno(sessno).data(1,:));
min_pretrlen=min(pretrlen);
min_pretrlen=min_pretrlen+1;
if min_pretrlen<min_pretrlen1
min_pretrlen1=min_pretrlen;
end
end
numchans=size(AllEEGData_complete_reshaped(1).sessno(1).trial(1).data,1);
timeFreq=NaN*ones(numchans,(min_posttrlen1+min_pretrlen1),nFrex,ntrials,nsess);
for i=1:numchans;
freqtime1=[];count=0;
for sessno=1:nsess
ntrials=length(AllEEGData_complete_reshaped(wueno).sessno(sessno).trial);
trl_movmt_start=diff(events_onoffsetkin_data(wueno).sessno(sessno).data(1:2,:));
for ntrl=1:ntrials
count=count+1;
trl_movmt_start_pt=(trl_movmt_start(ntrl))+2;
data1=AllEEGData_complete_reshaped(wueno).sessno(sessno).trial(ntrl).data(i,:);
[ freqtime] = wavelet_morlet( data1,frex,[wueno,sessno,ntrl],events_onoffsetkin_data );
% querypnts=linspace(1,length(data1),min_trlen1);
% freqtime_interp=zeros(nFrex,min_trlen1);
% for u=1:nFrex
% freqtime_interp(u,:)=interp1(freqtime(u,:),querypnts,'PCHIP');
% end
% truncation:
leng=size(freqtime,2);
rightlen=leng-trl_movmt_start_pt+1;
rightlen_truncate=rightlen-min_posttrlen1;
leftlen=leng-rightlen;
leftlen_truncate=leftlen-min_pretrlen1;
freqtime=freqtime(:,(leftlen_truncate+1):(end-rightlen_truncate));
trl_movmt_start_id=dsearchn(int32(querypnts'),trl_movmt_start_pt);
timeFreq(i,:,:,ntrl,sessno)=rot90(rot90(rot90(freqtime)));
% print([imgstoreloc sprintf('wueno%d',wueno) filesep...
% sprintf('chno_%d ',goodelectrodes(chnonew))],'-djpeg');close all;
% contourf(querypnts,frex,freqtime_interp,40,'linecolor','none'); colorbar;
% yran=get(gca,'YLim');
% line([trl_movmt_start_pt trl_movmt_start_pt],yran,'Color','k','LineStyle','--');
% pause;
end
end
plot(nanmean(nanmean(nanmean(timeFreq(i,:,:,:,:),3),4),5));title(sprintf('chn no. %d',i));
yran=get(gca,'YLim');
line([(min_pretrlen1+1) (min_pretrlen1+1)],yran,'Color','k','LineStyle','--');
pause;
end
timeFreq_all(wueno).data=timeFreq;
end