forked from hsezhiyan/ecs193b_web_service
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathef_helper.py
93 lines (70 loc) · 2.23 KB
/
ef_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import tensorflow as tf
import keras
from keras import backend as K
from keras.optimizers import Adam
from keras.layers import Dense
#from keras.models import load_model
import numpy as np
already_loaded = False
loaded_model = None
def mse_loss(y_actual, y_pred):
return K.mean(K.square(y_pred - y_actual))
def load_model():
adam = Adam(lr = 0.002, beta_1 = 0.9, beta_2 = 0.999) # a hyperparameter
# load weights into new model
model = tf.keras.models.load_model('trained_models/EFmodel.h5')
print("weights loaded")
#loaded_model.compile(loss=mse_loss, optimizer=adam, metrics=[mse_loss])
point_five = model.predict(np.zeros((1, 5)))
print(point_five)
return model
def prediction(ef_dict):
# raw prediction (without any dropout)
ef_data_list = process_ef_dict(ef_dict)
# ef_data_list = [0.14, 0.68, 0.66, 0.251869, 0.104164, 0.0272109]
# ef_data_list = [0.212, 0.486, 0.407, 0.188189, 0.128489, 0.523256]
global already_loaded
global loaded_model
print("loading model")
if already_loaded is False:
already_loaded = True
loaded_model = load_model()
print("model loaded")
loaded_model.summary()
print(ef_data_list)
prediction = loaded_model.predict([[ef_data_list]])
print(prediction)
return prediction[0]
def ef_output_string(pred):
if pred < 0.35:
lethality = "LETHAL"
else:
lethality = "NOT LETHAL"
output_string = """The predicted regular EF is {}, which is {}.""".format(pred, lethality)
return output_string
def process_ef_dict(ef_dict):
ef_data_list = []
for i, key in enumerate(ef_dict):
if ef_dict[key] == "": # left empty
ef_data_list.append(0.0)
continue
else:
try:
float_val = float(ef_dict[key])
except:
print("Raising float value exception.")
raise Exception("Form element {} should be a float.".format(key))
if key == 'IVS d, 2D':
float_val = float_val / 5.0
elif key == 'LV d, 2D':
float_val = float_val / 10.0
elif key == 'LV s, 2D':
float_val = float_val / 10.0
elif key == 'RVSP (TR)':
float_val = float_val / 125.0
elif key == 'LA Vol A/L Volume':
float_val = float_val / 200.0
else:
float_val = float_val / 100.0
ef_data_list.append(float_val)
return ef_data_list