forked from hsezhiyan/ecs193b_web_service
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCath_NN_app.py
54 lines (40 loc) · 1.42 KB
/
Cath_NN_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from flask import Flask, render_template, request, url_for, redirect
from keras.models import load_model
from NNprocess_code import process_nn_dict
import joblib
app = Flask(__name__)
@app.route("/", methods=["GET"])
def home():
return render_template("search_page.html")
@app.route("/NN_cath_page", methods=["GET"])
def NN_cath_page():
return render_template("NN_model.html")
@app.route("/NN_cath_calc", methods=["GET"])
def NN_cath_calc():
loaded_model = load_model('CathNNwts.h5')
cath_data = request.args.to_dict()
try:
cath_data_list = process_nn_dict(cath_data)
except Exception as error:
return str(error)
# print(cath_data_list)
# cath_data_list = []
# for key in cath_data:
# try:
# float(cath_data[key])
# float_bool = True
# except:
# float_bool = False
# if float_bool:
# cath_data_list.append(float(cath_data[key]))
# elif cath_data[key] == "":
# cath_data_list.append(-1)
# should be 1
# cath_data_list = [66, 1, 1, 0, 0, 0, 0, 0, 0, 175.0, 87.6, 0, 1, 0, 0, 0, -1, 2, 2, 1, 1, 2, 4, 1, 0, 0.0, 0, 0.0, 0, 0.5, 0, 0.9, 0, 0.0, 1, 1, 1, 1, 1, 1]
# should be 0
# cath_data_list = [63, 0, 1, 1, 0, 0, 1, 0, 0, 188.0, 71.0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 2, 1, 2, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1, 1, 1, 1, 1, 1]
cath_prediction = loaded_model.predict([cath_data_list])
return_string = f"Cath result is {cath_prediction}"
return return_string
if __name__ == "__main__":
app.run()