forked from confluentinc/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SessionWindowsExample.java
180 lines (167 loc) · 9.14 KB
/
SessionWindowsExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import io.confluent.examples.streams.avro.PlayEvent;
import io.confluent.kafka.serializers.AbstractKafkaAvroSerDeConfig;
import io.confluent.kafka.streams.serdes.avro.SpecificAvroSerde;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.utils.Bytes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.Consumed;
import org.apache.kafka.streams.kstream.Materialized;
import org.apache.kafka.streams.kstream.Produced;
import org.apache.kafka.streams.kstream.Serialized;
import org.apache.kafka.streams.kstream.SessionWindows;
import org.apache.kafka.streams.state.SessionStore;
import java.util.Collections;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.TimeUnit;
/**
* Demonstrates counting user activity (play-events) into Session Windows
* <p>
* In this example we count play-events by session. We define a session as events
* received by a user that all fall within a specified gap of inactivity. In this case,
* 30 minutes. The sessions are constantly aggregated into the StateStore "play-events-per-session",
* they are also output to a topic with the same name.
* <p>
* <br>
* HOW TO RUN THIS EXAMPLE
* <p>
* 1) Start Zookeeper, Kafka, and Confluent Schema Registry. Please refer to <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>.
* <p>
* 2) Create the input/intermediate/output topics used by this example.
* <pre>
* {@code
* $ bin/kafka-topics --create --topic play-events \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic play-events-per-session \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* }
* </pre>
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be
* `bin/kafka-topics.sh ...`.
* <p>
* 3) Start this example application either in your IDE or on the command line.
* <p>
* If via the command line please refer to <a href='https://github.com/confluentinc/kafka-streams-examples#packaging-and-running'>Packaging</a>.
* Once packaged you can then run:
* <pre>
* {@code
* $ java -cp target/kafka-streams-examples-5.0.0-SNAPSHOT-standalone.jar io.confluent.examples.streams.SessionWindowsExample
* }
* </pre>
* 4) Write some input data to the source topics (e.g. via {@link SessionWindowsExampleDriver}). The
* already running example application (step 3) will automatically process this input data and write
* the results to the output topic.
* <pre>
* {@code
* # Here: Write input data using the example driver. The driver will also consume, and print, the data from the output
* topic. The driver will stop when it has received all output records
* $ java -cp target/kafka-streams-examples-5.0.0-SNAPSHOT-standalone.jar io.confluent.examples.streams.SessionWindowsExampleDriver
* }
* </pre>
* You should see output data similar to:
* <pre>
* {@code
* jo@1484823406597->1484823406597 = 1 # new session for jo created
* bill@1484823466597->1484823466597 = 1 # new session for bill created
* sarah@1484823526597->1484823526597 = 1 # new session for sarah created
* jo@1484825207597->1484825207597 = 1 # new session for jo created as event time is after inactivity gap
* bill@1484823466597->1484825206597 = 2 # extend previous session for bill as event time is within inactivity gap
* sarah@1484827006597->1484827006597 = 1 # new session for sarah created as event time is after inactivity gap
* jo@1484823406597->1484825207597 = 3 # new event merges 2 previous sessions for jo
* bill@1484828806597->1484828806597 = 1 # new session for bill created
* sarah@1484827006597->1484827186597 = 2 # extend session for sarah as event time is within inactivity gap
* }
* </pre>
* <p>
* 5) Once you're done with your experiments, you can stop this example via {@code Ctrl-C}. If needed,
* also stop the Confluent Schema Registry ({@code Ctrl-C}), then stop the Kafka broker ({@code Ctrl-C}), and
* only then stop the ZooKeeper instance ({@code Ctrl-C}).
* <p>
* You can also take a look at io.confluent.examples.streams.SessionWindowsExampleTest for an example
* of the expected outputs.
*/
public class SessionWindowsExample {
static final String PLAY_EVENTS = "play-events";
static final Long INACTIVITY_GAP = TimeUnit.MINUTES.toMillis(30);
static final String PLAY_EVENTS_PER_SESSION = "play-events-per-session";
public static void main(String[] args) {
final String bootstrapServers = args.length > 0 ? args[0] : "localhost:9092";
final String schemaRegistryUrl = args.length > 1 ? args[1] : "http://localhost:8081";
final KafkaStreams streams = createStreams(bootstrapServers,
schemaRegistryUrl,
"/tmp/kafka-streams");
// Always (and unconditionally) clean local state prior to starting the processing topology.
// We opt for this unconditional call here because this will make it easier for you to play around with the example
// when resetting the application for doing a re-run (via the Application Reset Tool,
// http://docs.confluent.io/current/streams/developer-guide.html#application-reset-tool).
//
// The drawback of cleaning up local state prior is that your app must rebuilt its local state from scratch, which
// will take time and will require reading all the state-relevant data from the Kafka cluster over the network.
// Thus in a production scenario you typically do not want to clean up always as we do here but rather only when it
// is truly needed, i.e., only under certain conditions (e.g., the presence of a command line flag for your app).
// See `ApplicationResetExample.java` for a production-like example.
streams.cleanUp();
streams.start();
// Add shutdown hook to respond to SIGTERM and gracefully close Kafka Streams
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
static KafkaStreams createStreams(final String bootstrapServers,
final String schemaRegistryUrl,
final String stateDir) {
final Properties config = new Properties();
// Give the Streams application a unique name. The name must be unique in the Kafka cluster
// against which the application is run.
config.put(StreamsConfig.APPLICATION_ID_CONFIG, "session-windows-example");
config.put(StreamsConfig.CLIENT_ID_CONFIG, "session-windows-example-client");
// Where to find Kafka broker(s).
config.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
config.put(StreamsConfig.STATE_DIR_CONFIG, stateDir);
// Set to earliest so we don't miss any data that arrived in the topics before the process
// started
config.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// disable caching to see session merging
config.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0);
// create and configure the SpecificAvroSerdes required in this example
final SpecificAvroSerde<PlayEvent> playEventSerde = new SpecificAvroSerde<>();
final Map<String, String> serdeConfig = Collections.singletonMap(
AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG, schemaRegistryUrl);
playEventSerde.configure(serdeConfig, false);
final StreamsBuilder builder = new StreamsBuilder();
builder.stream(PLAY_EVENTS, Consumed.with(Serdes.String(), playEventSerde))
// group by key so we can count by session windows
.groupByKey(Serialized.with(Serdes.String(), playEventSerde))
// window by session
.windowedBy(SessionWindows.with(INACTIVITY_GAP))
// count play events per session
.count(Materialized.<String, Long, SessionStore<Bytes, byte[]>>as(PLAY_EVENTS_PER_SESSION)
.withKeySerde(Serdes.String())
.withValueSerde(Serdes.Long()))
// convert to a stream so we can map the key to a string
.toStream()
// map key to a readable string
.map((key, value) -> new KeyValue<>(key.key() + "@" + key.window().start() + "->" + key.window().end(), value))
// write to play-events-per-session topic
.to(PLAY_EVENTS_PER_SESSION, Produced.with(Serdes.String(), Serdes.Long()));
return new KafkaStreams(builder.build(), new StreamsConfig(config));
}
}