-
Notifications
You must be signed in to change notification settings - Fork 5
/
movie_recommender_system.py
195 lines (120 loc) · 4.36 KB
/
movie_recommender_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# -*- coding: utf-8 -*-
"""Movie_Recommender_System.ipynb
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
"""## Loading Data"""
movies = pd.read_csv('tmdb_5000_movies.csv')
credits = pd.read_csv('tmdb_5000_credits.csv')
movies.head(5)
movies.info()
credits.info()
credits.head(5)
"""## Merging both dataframes : Movies & Credits"""
movies = movies.merge(credits,on='title')
movies.shape
movies.head(1)
"""## Data Pre-Processing"""
#> important columns to be used in recommendation system :
# genres
# id
# keywords
# title
# overview
# cast
# crew
movies = movies[['movie_id','title','overview','genres','cast','keywords','crew']]
movies.head(5)
movies.isnull().sum()
movies.dropna(inplace=True)
movies.isnull().sum()
movies.duplicated().sum()
movies.iloc[0].genres
import ast
# extracting genres from raw data for the creation of tags
def convert(obj):
L = []
for i in ast.literal_eval(obj):
L.append(i['name'])
return L
movies['genres'] = movies['genres'].apply(convert)
movies['keywords'] = movies['keywords'].apply(convert)
movies.head(5)
#function for extracting top 3 actors from the movie
def convert3(obj):
L = []
counter = 0
for i in ast.literal_eval(obj):
if counter !=3:
L.append(i['name'])
counter+=1
else:
break
return L
movies['cast'] = movies['cast'].apply(convert3)
movies.head(5)
#function to fetch the director of movie from crew column
def fetch_director(obj):
L = []
for i in ast.literal_eval(obj):
if i['job'] == 'Director':
L.append(i['name'])
break
return L
movies['crew'] = movies['crew'].apply(fetch_director)
movies.head(5)
movies['overview'] = movies['overview'].apply(lambda x:x.split())
movies.head()
# applying a transformation to remove spaces between words
movies['genres'] = movies['genres'].apply(lambda x:[i.replace(" ","") for i in x])
movies['keywords'] = movies['keywords'].apply(lambda x:[i.replace(" ","") for i in x])
movies['cast'] = movies['cast'].apply(lambda x:[i.replace(" ","") for i in x])
movies['crew'] = movies['crew'].apply(lambda x:[i.replace(" ","") for i in x])
movies.head()
movies['tags'] = movies['overview'] + movies['genres'] + movies['keywords'] + movies['cast'] + movies['crew']
movies.head()
new_df = movies[['movie_id','title','tags']]
new_df['tags'] = new_df['tags'].apply(lambda x:" ".join(x))
new_df.head()
new_df['tags'][0]
new_df['tags'] = new_df['tags'].apply(lambda x:x.lower())
new_df['tags'][0]
"""## Text Vectorization"""
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(max_features=5000,stop_words='english')
vectors = cv.fit_transform(new_df['tags']).toarray()
## Most frequent 5000 words
# cv.get_feature_names()
"""## Applying Stemming Process"""
import nltk #for stemming process
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
#defining the stemming function
def stem(text):
y=[]
for i in text.split():
y.append(ps.stem(i))
return " ".join(y)
stem('In the 22nd century, a paraplegic Marine is dispatched to the moon Pandora on a unique mission, but becomes torn between following orders and protecting an alien civilization. Action Adventure Fantasy ScienceFiction cultureclash future spacewar spacecolony society spacetravel futuristic romance space alien tribe alienplanet cgi marine soldier battle loveaffair antiwar powerrelations mindandsoul 3d SamWorthington ZoeSaldana SigourneyWeaver JamesCameron')
new_df['tags'] = new_df['tags'].apply(stem)
"""## Similarity Measures"""
# For calculating similarity, the cosine distance between different vectors will be used.
from sklearn.metrics.pairwise import cosine_similarity
similarity = cosine_similarity(vectors)
"""## Making the recommendation function"""
def recommend(movie):
movie_index = new_df[new_df['title'] == movie].index[0]
distances = similarity[movie_index]
movies_list = sorted(list(enumerate(distances)),reverse=True, key=lambda x:x[1])[1:6]
for i in movies_list:
print(new_df.iloc[i[0]].title)
"""## Recommendation"""
recommend('Batman Begins') #enter movies only which are in the dataset, otherwise it would result in error
new_df.iloc[1216]
"""## Exporting the Model"""
import pickle
pickle.dump(new_df,open('movies.pkl','wb'))
pickle.dump(new_df.to_dict(),open('movie_dict.pkl','wb'))
pickle.dump(similarity,open('similarity.pkl','wb'))