-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquadrics.h
166 lines (150 loc) · 4.51 KB
/
quadrics.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/* Returns the sign of x */
float sgnf ( float x ) {
if ( x < 0 ) {
return -1;
}
if ( x > 0 ) {
return 1;
}
return 0;
}
/* Returns the absolute value of x */
float absf ( float x ) {
if ( x < 0 ) {
return -x;
}
return x;
}
/* sqC (v, n)
* This function implements the c(v,n) utility function
*
* c(v,n) = sgnf(cos(v)) * |cos(v)|^n
*/
float sqC ( float v, float n ) {
return sgnf((float)cos(v)) * (float)powf(absf((float)cos(v)),n);
}
/* sqCT (v, n, alpha)
* This function implements the CT(v,n,alpha) utility function
*
* CT(v,n,alpha) = alpha + c(v,n)
*/
float sqCT ( float v, float n, float alpha ) {
return alpha + sqC(v,n);
}
/* sqS (v, n)
* This function implements the s(v,n) utility function
*
* s(v,n) = sgnf(sin(v)) * |sin(v)|^n
*/
float sqS ( float v, float n ) {
return sgnf((float)sin(v)) * (float)powf(absf((float)sin(v)),n);
}
/* sqEllipsoid(a1, a2, a3, u, v, n, e, *x, *y, *z, *nx, *ny, *nz)
*
* a1, a2, and a3 are the x, y, and z scaling factors, respecfully.
* For proper generation of the solid, u should be >= -PI / 2 and <= PI / 2.
* Similarly, v should be >= -PI and <= PI.
*/
void sqEllipsoid ( float a1, float a2, float a3, float u, float v, float n,
float e, float *x, float *y, float *z, float *nx, float *ny,
float *nz ) {
*x = a1 * sqC (u, n) * sqC (v, e);
*y = a2 * sqC (u, n) * sqS (v, e);
*z = a3 * sqS (u, n);
*nx= sqC (u, 2 - n) * sqC (v, 2 - e) / a1;
*ny= sqC (u, 2 - n) * sqS (v, 2 - e) / a2;
*nz= sqS (u, 2 - n) / a3;
}
typedef struct SuperQuadric {
float a1, a2, a3; /* Scaling factors for x, y, and z */
float alpha; /* For generating toroids. This is the inner radius */
float n, e; /* North-South/East-West Roundness/Squareness Factors */
float u1, u2; /* Initial and Final U values */
float v1, v2; /* Initial and Final V values */
int u_segs; /* Number of segments for U */
int v_segs; /* Number of segments for V */
float s1, t1; /* Initial s and t texture coordinates */
float s2, t2; /* Final S and T texture coordinates */
int texture_flag; /* Flag determining texture coordinate specification */
int gl_list_id; /* OpenGL Display List ID */
} SuperQuadric;
/* sqSolidEllipsoid ( sq, make_display_list, gen_texture_coordinates )
*
* Generates a solid ellipsoid using the parameters from sq and optionally
* generates texture coordinates and a display list using the ID from sq.
*/
void sqSolidEllipsoid ( SuperQuadric *sq, int make_display_list, int gen_texture_coordinates ) {
float U, dU, V, dV;
float S, dS, T, dT;
int X, Y; /* for looping */
float x, y, z;
float nx, ny, nz;
/* Calculate delta variables */
dU = (float)(sq->u2 - sq->u1) / (float)sq->u_segs;
dV = (float)(sq->v2 - sq->v1) / (float)sq->v_segs;
dS = (float)(sq->s2 - sq->s1) / (float)sq->u_segs;
dT = (float)(sq->t2 - sq->t1) / (float)sq->v_segs;
/* If we're going to make a display list then start it */
if ( make_display_list ) {
glNewList ( sq->gl_list_id, GL_COMPILE );
}
/* Initialize variables for loop */
U = sq->u1;
S = sq->s1;
glBegin ( GL_QUADS );
for ( Y = 0; Y < sq->u_segs; Y++ ) {
/* Initialize variables for loop */
V = sq->v1;
T = sq->t1;
for ( X = 0; X < sq->v_segs; X++ ) {
/* VERTEX #1 */
sqEllipsoid ( 1, 1, 1, U, V, sq->n, sq->e, &x, &y, &z, &nx, &ny, &nz );
glNormal3f ( nx, ny, nz );
glTexCoord2f ( S, T );
glVertex3f ( x, y, z );
/* VERTEX #2 */
sqEllipsoid ( 1, 1, 1, U + dU, V, sq->n, sq->e, &x, &y, &z, &nx, &ny, &nz );
glNormal3f ( nx, ny, nz );
glTexCoord2f ( S + dS, T );
glVertex3f ( x, y, z );
/* VERTEX #3 */
sqEllipsoid ( 1, 1, 1, U + dU, V + dV, sq->n, sq->e, &x, &y, &z, &nx, &ny, &nz );
glNormal3f ( nx, ny, nz );
glTexCoord2f ( S + dS, T + dT );
glVertex3f ( x, y, z );
/* VERTEX #4 */
sqEllipsoid ( 1, 1, 1, U, V + dV, sq->n, sq->e, &x, &y, &z, &nx, &ny, &nz );
glNormal3f ( nx, ny, nz );
glTexCoord2f ( S, T + dT );
glVertex3f ( x, y, z );
/* Update variables for next loop */
V += dV;
T += dT;
}
/* Update variables for next loop */
S += dS;
U += dU;
}
glEnd ( );
/* If we're making a display list then stop */
if ( make_display_list ) {
glEndList ( );
}
}
void sqSolidRoundCube ( float radius, int slices, int segments ) {
SuperQuadric sq;
sq.a1 = sq.a2 = sq.a3 = radius;
sq.n = 0.2f;
sq.e = 0.2f;
sq.u1 = -PI / 2;
sq.u2 = PI / 2;
sq.v1 = -PI;
sq.v2 = PI;
sq.u_segs = slices;
sq.v_segs = segments;
sq.s1 = 0.0f;
sq.t1 = 0.0f;
sq.s2 = 1.0f;
sq.t2 = 1.0f;
sqSolidEllipsoid ( &sq, 0, 1 );
}