forked from LukasKG/GAN_SHL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sklearn_functions.py
192 lines (139 loc) · 6.46 KB
/
sklearn_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
from joblib import Parallel, delayed
import matplotlib.pyplot as plt
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, f1_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier as MLP
from sklearn.svm import SVC
if __package__ is None or __package__ == '':
import data_source as ds
from params import Params, save_fig
import preprocessing as pp
else:
from . import data_source as ds
from .params import Params, save_fig
from . import preprocessing as pp
def sklearn_baseline(P,V=None):
P.log(P)
F = pp.perform_preprocessing(P, ds.get_data(P,V), P.copy().set_keys( sample_no = None, undersampling = False, oversampling = False, ))
x_train, y_train = F[0]
x_test, y_test = F[2]
y_train, y_test = y_train.ravel(), y_test.ravel()
# P.log('cross_val: '+str(P.get('cross_val')))
# P.log(' FX_num: '+str(P.get('FX_num')))
# ''' Multi-layer Perceptron '''
# res = np.empty(shape=(P.get('runs'),5))
# for run in range(P.get('runs')):
# clf = MLP(hidden_layer_sizes=(100,100),max_iter=500)
# clf.fit(x_train, y_train)
# y_pred = clf.predict(x_train)
# res[run,0] = accuracy_score(y_train,y_pred)
# res[run,1] = f1_score(y_train,y_pred,average='macro')
# y_pred = clf.predict(x_test)
# res[run,2] = accuracy_score(y_test,y_pred)
# res[run,3] = f1_score(y_test,y_pred,average='macro')
# res[run,4] = clf.n_iter_
# res = np.mean(res,axis=0)
# P.log(f"MLP Acc Train: {res[0]:.2f}")
# P.log(f"MLP F1 Train: {res[1]:.2f}")
# P.log(f"MLP Acc Test: {res[2]:.2f}")
# P.log(f"MLP F1 Test: {res[3]:.2f}")
# P.log(F"MLP Iterations = {res[4]}")
''' Random Forest Classifier '''
res = np.empty(shape=(P.get('runs'),4))
for run in range(P.get('runs')):
clf = RandomForestClassifier()
clf.fit(x_train, y_train)
y_pred = clf.predict(x_train)
res[run,0] = accuracy_score(y_train,y_pred)
res[run,1] = f1_score(y_train,y_pred,average='macro')
y_pred = clf.predict(x_test)
res[run,2] = accuracy_score(y_test,y_pred)
res[run,3] = f1_score(y_test,y_pred,average='macro')
res = np.mean(res,axis=0)
P.log("")
P.log(f"RFC Acc Train: {res[0]:.5f}")
P.log(f"RFC F1 Train: {res[1]:.5f}")
P.log("")
P.log(f"RFC Acc Test: {res[2]:.5f}")
P.log(f"RFC F1 Test: {res[3]:.5f}")
''' Gaussian Naive Bayes '''
res = np.empty(shape=(P.get('runs'),4))
for run in range(P.get('runs')):
clf = GaussianNB()
clf.fit(x_train, y_train)
y_pred = clf.predict(x_train)
res[run,0] = accuracy_score(y_train,y_pred)
res[run,1] = f1_score(y_train,y_pred,average='macro')
y_pred = clf.predict(x_test)
res[run,2] = accuracy_score(y_test,y_pred)
res[run,3] = f1_score(y_test,y_pred,average='macro')
res = np.mean(res,axis=0)
P.log("")
P.log(f"GNB Acc Train: {res[0]:.5f}")
P.log(f"GNB F1 Train: {res[1]:.5f}")
P.log("")
P.log(f"GNB Acc Test: {res[2]:.5f}")
P.log(f"GNB F1 Test: {res[3]:.5f}")
# ''' Support Vector Classification '''
# res = np.empty(shape=(P.get('runs'),4))
# for run in range(P.get('runs')):
# clf = SVC()
# clf.fit(x_train, y_train)
# y_pred = clf.predict(x_train)
# res[run,0] = accuracy_score(y_train,y_pred)
# res[run,1] = f1_score(y_train,y_pred,average='macro')
# y_pred = clf.predict(x_test)
# res[run,2] = accuracy_score(y_test,y_pred)
# res[run,3] = f1_score(y_test,y_pred,average='macro')
# res = np.mean(res,axis=0)
# P.log(f"SVC Acc Train: {res[0]:.2f}")
# P.log(f"SVC F1 Train: {res[1]:.2f}")
# P.log(f"SVC Acc Test: {res[2]:.2f}")
# P.log(f"SVC F1 Test: {res[3]:.2f}")
def plt_FX_num(P,max_n=908,P_val=None,indeces=None):
if indeces is not None:max_n = min(max_n,len(indeces))
P.set('FX_indeces',None)
V = ds.get_data(P)
for i,(X,Y) in enumerate(V):
count_string = ', '.join([ f"{int(val)}: {count}" for val,count in zip(*np.unique(Y,return_counts=True))])
P.log(f"V[{i+1}]: {X.shape} - {Y.shape} ({count_string})")
def train_model(X,y,seed):
mlp = MLP(hidden_layer_sizes=(150,150),max_iter=2000, random_state=seed)
return mlp.fit(X, y)
mat = np.empty(shape=(3,max_n))
FX = np.arange(1,max_n+1,1)
for fx in FX:
if indeces is None:P.set('FX_num',fx)
else: P.set('FX_indeces',indeces[:fx])
V0 = ds.select_features(V,P.get('FX_indeces'))
F0 = pp.perform_preprocessing(P, V0, P_val)
x_train, y_train = F0[0]
x_test, y_test = F0[2]
model_list = Parallel(n_jobs=8)(delayed(train_model)(x_train, y_train.ravel(), seed) for seed in range(P.get('runs')))
res = np.empty(shape=(3,P.get('runs')))
for run,mlp in enumerate(model_list):
res[0,run] = accuracy_score(y_test.ravel(),mlp.predict(x_test))
res[1,run] = f1_score(y_test.ravel(),mlp.predict(x_test),average='weighted')
res[2,run] = mlp.n_iter_
mat[:,fx-1] = np.mean(res,axis=1)
P.log(f"Fx_num = {fx}: [Acc = {mat[0,fx-1]:.2f}] [F1 = {mat[1,fx-1]:.2f}] [{mat[2,fx-1]:.2f} iterations]")
plt.figure(figsize=(27,9),dpi=300,clear=True)
fig, ax = plt.subplots()
ax.plot(FX,mat[0],linestyle='solid',label='Accuracy')
ax.plot(FX,mat[1],linestyle='solid',label='F1 Score')
ax.legend()
ax.set_xlabel('FX_num')
ax.set_ylabel('Performance')
ax.set_xlim(1,max_n)
ax.grid()
save_fig(P,'eval_fx_num',fig)
ax.plot(FX,mat[2]/np.max(mat[2]),linestyle='solid',label='Iterations')
ax.legend()
save_fig(P,'eval_fx_num_iterations',fig)
if __name__ == "__main__":
fx_num = 5
P_fx_num = Params( name='fx_num', dataset='SHL_ext', sample_no=512, undersampling=False, oversampling=False, )
plt_FX_num(P_fx_num,max_n=fx_num,P_val=P_fx_num.copy().set_keys(sample_no=None, undersampling=False, oversampling=False,))