forked from LukasKG/DeepConvLSTM_SFA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic_run.py
258 lines (198 loc) · 8.94 KB
/
basic_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from datetime import datetime
from os import makedirs
from sys import maxsize
import data_source as ds
from params import Params
from DeepConvLSTM_new.datasets import SensorDataset
from DeepConvLSTM_new.DeepConvLSTM_py3 import DeepConvLSTM
from DeepConvLSTM_new.DeepConvLSTM_py3 import model_train
from DeepConvLSTM_new.DeepConvLSTM_py3 import model_eval
def run_DeepConv(P,conv_layers=4,epochs=30,verbose=True):
config_dataset = {
"dataset": P.get('dataset'),
"window": P.get('winsize'),
"stride": P.get('jumpsize'),
"path": P.get('output_path'),
}
dataset = SensorDataset(**config_dataset, data=P.F[0], prefix="train")
#dataset.get_info()
dataset_val = SensorDataset(**config_dataset, data=P.F[1], prefix="val")
#dataset_val.get_info()
dataset_test = SensorDataset(**config_dataset, data=P.F[2], prefix="test")
#dataset_test.get_info()
n_classes = len(P.get('labels'))
n_channels = dataset.n_channels
deepconv = DeepConvLSTM(n_channels=n_channels, n_classes=n_classes, conv_layers=conv_layers, dataset=P.get('dataset')).cuda()
# Define train config options
config_train = {'batch_size': 256,
'optimizer': 'Adam',
'lr': 1e-3,
'lr_step': 10,
'lr_decay': 0.9,
'init_weights': 'orthogonal',
'epochs': P.get('epochs'),
'print_freq': 100
}
model_train(deepconv, dataset, dataset_val, config_train, verbose=verbose)
test_config = {'batch_size': 256,
'train_mode': False,
'dataset': P.get('dataset'),
'num_batches_eval': 212}
acc_test, fm_test, fw_test, elapsed = model_eval(deepconv, dataset_test, test_config, return_results=True)
P.log(f"[-] Test acc: {100 * acc_test:.2f}(%)\tfm: {100 * fm_test:.2f}(%)\tfw: {100 * fw_test:.2f}(%)")
return acc_test, fm_test, fw_test, elapsed
def test_param(param_args,param_name='No Name',param_list=None,degree_list=[1,2],init_print=True):
P = Params(**param_args,init_print=init_print)
save_path = f"results/{P.get('name')}_R{P.get('run')}"
results = np.zeros((3,len(degree_list),len(param_list)))
for i,degree in enumerate(degree_list):
for j,param_val in enumerate(param_list):
param_args['degree'] = degree
param_args[param_name] = param_val
P_run = Params(**param_args)
P.log(f"Run {degree=} P[{param_name}]={P_run.get(param_name)} (Run {P_run.get('run')+1})")
acc_test, fm_test, fw_test, elapsed = run_DeepConv(P_run,conv_layers=P.get('conv_layers'))
results[0,i,j] = acc_test
results[1,i,j] = fm_test
results[2,i,j] = fw_test
P.log(f"Baseline")
param_args['SFA'] = False
base_results = np.zeros((3))
P_run = Params(**param_args)
acc_base, fm_base, fw_base, elapsed_base = run_DeepConv(P_run,conv_layers=P.get('conv_layers'))
base_results[0] = acc_base
base_results[1] = fm_base
base_results[2] = fw_base
return results, base_results
if __name__ == "__main__":
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-s','--short', action='store_true',dest='short',help='Activate test mode.')
parser.add_argument('-r','--runs', type=int, help='Number of runs.',default=maxsize,dest='runs')
parser.add_argument('-e','--epochs', type=int, help='Number of epochs.',default=300,dest='epochs')
args = parser.parse_args()
param_args = {}
param_args['name'] = 'run'
param_args['verbose'] = False
param_args['dataset'] = 'SHL_ext'
param_args['dataset'] = 'User1'
param_args['dataset'] = 'SHL'
param_args['dataset'] = 'User1s'
param_args['labels'] = [1,2,3,4,5,6,7,8]
param_args['label_idx'] = True
param_args['noise'] = 0.0
param_args['channels'] = 'acc_mag'
#param_args['channels'] = 'acc'
#param_args['channels'] = 'both_mag'
param_args['winsize'] = 500
param_args['jumpsize'] = 500
param_args['window_channels'] = True
### SFA Params ###
param_args['SFA'] = True
param_args['save_SFA'] = True
param_args['load_SFA'] = True
param_args['past_samples'] = 1
param_args['training_samples'] = 100
param_args['degree'] = 1
param_args['iterval'] = 20
param_args['whitening_dim'] = 5
param_args['output_dim'] = 2
if args.short:
param_args['name'] = 'Short_Run'
param_args['dataset'] = 'Short'
param_args['labels'] = [1,2,4]
param_args['save_SFA'] = False
param_args['load_SFA'] = False
runs = args.runs
epochs = args.epochs
past_sample_list = np.array([3,5,8,15,40,70,100])
degrees = np.array(range(1,3))
conv_layer_list = [1,2,3,4]
if args.short:
runs = 2
epochs = 5
past_sample_list = np.array([1,2])
degrees = np.array([1])
conv_layer_list = [1]
param_args['runs'] = runs
param_args['epochs'] = epochs
param_args['conv_layers'] = 4
P = Params(**param_args)
makedirs('results/', exist_ok=True)
result_mat = ds.load_file("results/result_mat.npy")
if result_mat is None:
result_mat = np.zeros((0,len(degrees),len(conv_layer_list),len(past_sample_list)+1))
run = result_mat.shape[0]
while run < param_args['runs']:
param_args['run'] = run
new_mat = np.zeros((1,len(degrees),len(conv_layer_list),len(past_sample_list)+1))
result_mat = np.concatenate((result_mat,new_mat), axis=0)
for c,conv_layers in enumerate(conv_layer_list):
param_args['conv_layers'] = conv_layers
param_args['name'] = f"E{epochs}_CL{conv_layers}"
P = Params(**param_args,init_print=True)
results, base_results = test_param(
param_args=param_args,
param_name='past_samples',
param_list=past_sample_list,
degree_list=degrees,
init_print=False)
for j,_ in enumerate(degrees):
result_mat[run,j,c,0] = base_results[2]
result_mat[run,j,c,1:] = results[2,j]
results_mean = np.mean(result_mat[:,:,c,1:],axis=0)
base_results_mean = np.mean(result_mat[:,0,c,0],axis=0)
base_vector = np.zeros((past_sample_list.shape[0]))
base_vector.fill(base_results_mean)
for scale in ['linear','log']:
for i,degree in enumerate(degrees):
fig, ax = plt.subplots()
ax.set_title(f"F1 weighted {degree=}")
ax.set_ylabel('%')
ax.set_ylim([0, 1])
ax.set_xlabel('Past Samples')
ax.set_xlim([past_sample_list[0]-1, past_sample_list[-1]+1])
ax.set_xscale(scale)
ax.plot(past_sample_list,results_mean[i], label='Performance')
ax.plot(past_sample_list,base_vector, label='Baseline')
ax.grid()
ax.legend()
ds.save_fig(P,f"f1_weighted_{degree=}_{scale=}",fig,close=True)
P.log(f"Save results {run=} {result_mat.shape=}")
ds.save_file("results/result_mat.npy", result_mat)
run+=1
# Create Figures
for c,conv_layers in enumerate(conv_layer_list):
param_args['conv_layers'] = conv_layers
param_args['name'] = f"E{epochs}_CL{conv_layers}"
P = Params(**param_args)
results_mean = np.mean(result_mat[:,:,c,1:],axis=0)
base_results_mean = np.mean(result_mat[:,0,c,0],axis=0)
base_vector = np.zeros((past_sample_list.shape[0]))
base_vector.fill(base_results_mean)
for scale in ['linear','log']:
for i,degree in enumerate(degrees):
fig, ax = plt.subplots()
ax.set_title(f"F1 weighted {degree=}")
ax.set_ylabel('%')
ax.set_ylim([0, 1])
ax.set_xlabel('Past Samples')
ax.set_xlim([past_sample_list[0]-1, past_sample_list[-1]+1])
ax.set_xscale(scale)
ax.plot(past_sample_list,results_mean[i], label='Performance')
ax.plot(past_sample_list,base_vector, label='Baseline')
ax.grid()
ax.legend()
ds.save_fig(P,f"f1_weighted_{degree=}_{scale=}",fig,close=True)
print(f"{np.min(result_mat)=}")
mean_results = np.mean(result_mat,axis=0)
print(f"{mean_results.shape}")
for d,degree in enumerate(degrees):
df = pd.DataFrame(mean_results[d]*100)
df=df.round(1)
df.columns = [0]+list(past_sample_list)
df.index = conv_layer_list
df.to_excel(f'E{epochs}_Deg{degree}.xlsx')