-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIQAloss.py
188 lines (165 loc) · 9.03 KB
/
IQAloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import torch.nn.functional as F
import numpy as np
eps = 1e-8
class IQALoss(torch.nn.Module):
def __init__(self, loss_type='linearity', alpha=[1, 0], p=1, q=2, monotonicity_regularization=True, gamma=0.1, detach=False):
super(IQALoss, self).__init__()
self.loss_type = loss_type
self.alpha = alpha
self.p = p
self.q = q
self.monotonicity_regularization = monotonicity_regularization
self.gamma = gamma
self.detach = detach
self.l2_loss = torch.nn.MSELoss().cuda()
def forward(self, y_pred, y):
len_pred = y_pred.size()[1]
y = y[0].view(-1, len_pred)
loss = 0
weights = [1, 1/len_pred, 1/len_pred, 1/len_pred, 1/len_pred]
for i in range(len_pred):
loss += self.loss_func(y_pred[:, i].view(-1, 1), y[:, i].view(-1, 1)) * weights[i] * self.gamma
return loss
def loss_func(self, y_pred, y):
if self.loss_type == 'mae':
loss = F.l1_loss(y_pred, y)
elif self.loss_type == 'mse':
loss = F.mse_loss(y_pred, y)
elif self.loss_type == 'norm-in-norm':
loss = norm_loss_with_normalization(y_pred, y, alpha=self.alpha, p=self.p, q=self.q, detach=self.detach)
elif self.loss_type == 'min-max-norm':
loss = norm_loss_with_min_max_normalization(y_pred, y, alpha=self.alpha, detach=self.detach)
elif self.loss_type == 'mean-norm':
loss = norm_loss_with_mean_normalization(y_pred, y, alpha=self.alpha, detach=self.detach)
elif self.loss_type == 'scaling':
loss = norm_loss_with_scaling(y_pred, y, alpha=self.alpha, p=self.p, detach=self.detach)
else:
loss = linearity_induced_loss(y_pred, y, self.alpha, detach=self.detach)
if self.monotonicity_regularization:
loss += self.gamma * monotonicity_regularization(y_pred, y, detach=self.detach)
return loss
def monotonicity_regularization(y_pred, y, detach=False):
"""monotonicity regularization"""
if y_pred.size(0) > 1: #
ranking_loss = F.relu((y_pred-y_pred.t()) * torch.sign((y.t()-y)))
scale = 1 + torch.max(ranking_loss.detach()) if detach else 1 + torch.max(ranking_loss)
return torch.sum(ranking_loss) / y_pred.size(0) / (y_pred.size(0)-1) / scale
else:
return F.l1_loss(y_pred, y_pred.detach()) # 0 for batch with single sample.
def linearity_induced_loss(y_pred, y, alpha=[1, 1], detach=False):
"""linearity-induced loss, actually MSE loss with z-score normalization"""
if y_pred.size(0) > 1: # z-score normalization: (x-m(x))/sigma(x).
sigma_hat, m_hat = torch.std_mean(y_pred.detach(), unbiased=False) if detach else torch.std_mean(y_pred, unbiased=False)
y_pred = (y_pred - m_hat) / (sigma_hat + eps)
sigma, m = torch.std_mean(y, unbiased=False)
y = (y - m) / (sigma + eps)
scale = 4
loss0, loss1 = 0, 0
if alpha[0] > 0:
loss0 = F.mse_loss(y_pred, y) / scale # ~ 1 - rho, rho is PLCC
if alpha[1] > 0:
rho = torch.mean(y_pred * y)
loss1 = F.mse_loss(rho * y_pred, y) / scale # 1 - rho ** 2 = 1 - R^2, R^2 is Coefficient of determination
# loss0 = (1 - torch.cosine_similarity(y_pred.t() - torch.mean(y_pred), y.t() - torch.mean(y))[0]) / 2
# yp = y_pred.detach() if detach else y_pred
# ones = torch.ones_like(yp.detach())
# yp1 = torch.cat((yp, ones), dim=1)
# h = torch.mm(torch.inverse(torch.mm(yp1.t(), yp1)), torch.mm(yp1.t(), y))
# err = torch.pow(torch.mm(torch.cat((y_pred, ones), dim=1), h) - y, 2) #
# normalization = 1 + torch.max(err.detach()) if detach else 1 + torch.max(err)
# loss1 = torch.mean(err) / normalization
return (alpha[0] * loss0 + alpha[1] * loss1) / (alpha[0] + alpha[1])
else:
return F.l1_loss(y_pred, y_pred.detach()) # 0 for batch with single sample.
def norm_loss_with_normalization(y_pred, y, alpha=[1, 1], p=1, q=2, detach=False, exponent=True):
"""norm_loss_with_normalization: norm-in-norm"""
# print(y_pred)
# print(y)
N = y_pred.size(0)
if N > 1:
m_hat = torch.mean(y_pred.detach()) if detach else torch.mean(y_pred)
y_pred = y_pred - m_hat # very important!!
normalization = torch.norm(y_pred.detach(), p=q) if detach else torch.norm(y_pred, p=q) # Actually, z-score normalization is related to q = 2.
# print('bhat = {}'.format(normalization.item()))
y_pred = y_pred / (eps + normalization) # very important!
y = y - torch.mean(y)
y = y / (eps + torch.norm(y, p=q))
scale = np.power(2, max(1,1./q)) * np.power(N, max(0,1./p-1./q)) # p, q>0
loss0, loss1 = 0, 0
if alpha[0] > 0:
err = y_pred - y
if p < 1: # avoid gradient explosion when 0<=p<1; and avoid vanishing gradient problem when p < 0
err += eps
loss0 = torch.norm(err, p=p) / scale # Actually, p=q=2 is related to PLCC
loss0 = torch.pow(loss0, p) if exponent else loss0 #
if alpha[1] > 0:
rho = torch.cosine_similarity(y_pred.t(), y.t()) #
err = rho * y_pred - y
if p < 1: # avoid gradient explosion when 0<=p<1; and avoid vanishing gradient problem when p < 0
err += eps
loss1 = torch.norm(err, p=p) / scale # Actually, p=q=2 is related to LSR
loss1 = torch.pow(loss1, p) if exponent else loss1 # #
# by = normalization.detach()
# e0 = err.detach().view(-1)
# ones = torch.ones_like(e0)
# yhat = y_pred.detach().view(-1)
# g0 = torch.norm(e0, p=p) / torch.pow(torch.norm(e0, p=p) + eps, p) * torch.pow(torch.abs(e0), p-1) * e0 / (torch.abs(e0) + eps)
# ga = -ones / N * torch.dot(g0, ones)
# gg0 = torch.dot(g0, g0)
# gga = torch.dot(g0+ga, g0+ga)
# print("by: {} without a and b: {} with a: {}".format(normalization, gg0, gga))
# gb = -torch.pow(torch.abs(yhat), q-1) * yhat / (torch.abs(yhat) + eps) * torch.dot(g0, yhat)
# gab = torch.dot(ones, torch.pow(torch.abs(yhat), q-1) * yhat / (torch.abs(yhat) + eps)) / N * torch.dot(g0, yhat)
# ggb = torch.dot(g0+gb, g0+gb)
# ggab = torch.dot(g0+ga+gb+gab, g0+ga+gb+gab)
# print("by: {} without a and b: {} with a: {} with b: {} with a and b: {}".format(normalization, gg0, gga, ggb, ggab))
# print((alpha[0] * loss0 + alpha[1] * loss1) / (alpha[0] + alpha[1]))
return (alpha[0] * loss0 + alpha[1] * loss1) / (alpha[0] + alpha[1])
else:
return F.l1_loss(y_pred, y_pred.detach()) # 0 for batch with single sample.
def norm_loss_with_min_max_normalization(y_pred, y, alpha=[1, 1], detach=False):
if y_pred.size(0) > 1:
m_hat = torch.min(y_pred.detach()) if detach else torch.min(y_pred)
M_hat = torch.max(y_pred.detach()) if detach else torch.max(y_pred)
y_pred = (y_pred - m_hat) / (eps + M_hat - m_hat) # min-max normalization
y = (y - torch.min(y)) / (eps + torch.max(y) - torch.min(y))
loss0, loss1 = 0, 0
if alpha[0] > 0:
loss0 = F.mse_loss(y_pred, y)
if alpha[1] > 0:
rho = torch.cosine_similarity(y_pred.t(), y.t()) #
loss1 = F.mse_loss(rho * y_pred, y)
return (alpha[0] * loss0 + alpha[1] * loss1) / (alpha[0] + alpha[1])
else:
return F.l1_loss(y_pred, y_pred.detach()) # 0 for batch with single sample.
def norm_loss_with_mean_normalization(y_pred, y, alpha=[1, 1], detach=False):
if y_pred.size(0) > 1:
mean_hat = torch.mean(y_pred.detach()) if detach else torch.mean(y_pred)
m_hat = torch.min(y_pred.detach()) if detach else torch.min(y_pred)
M_hat = torch.max(y_pred.detach()) if detach else torch.max(y_pred)
y_pred = (y_pred - mean_hat) / (eps + M_hat - m_hat) # mean normalization
y = (y - torch.mean(y)) / (eps + torch.max(y) - torch.min(y))
loss0, loss1 = 0, 0
if alpha[0] > 0:
loss0 = F.mse_loss(y_pred, y) / 4
if alpha[1] > 0:
rho = torch.cosine_similarity(y_pred.t(), y.t()) #
loss1 = F.mse_loss(rho * y_pred, y) / 4
return (alpha[0] * loss0 + alpha[1] * loss1) / (alpha[0] + alpha[1])
else:
return F.l1_loss(y_pred, y_pred.detach()) # 0 for batch with single sample.
def norm_loss_with_scaling(y_pred, y, alpha=[1, 1], p=2, detach=False):
if y_pred.size(0) > 1:
normalization = torch.norm(y_pred.detach(), p=p) if detach else torch.norm(y_pred, p=p)
y_pred = y_pred / (eps + normalization) # mean normalization
y = y / (eps + torch.norm(y, p=p))
loss0, loss1 = 0, 0
if alpha[0] > 0:
loss0 = F.mse_loss(y_pred, y) / 4
if alpha[1] > 0:
rho = torch.cosine_similarity(y_pred.t(), y.t()) #
loss1 = F.mse_loss(rho * y_pred, y) / 4
return (alpha[0] * loss0 + alpha[1] * loss1) / (alpha[0] + alpha[1])
else:
return F.l1_loss(y_pred, y_pred.detach()) # 0 for batch with single sample.