diff --git a/doc/_src_docs/applications/Mixed_Hier_usage.rst b/doc/_src_docs/applications/Mixed_Hier_usage.rst index 6c5fbee81..119e46567 100644 --- a/doc/_src_docs/applications/Mixed_Hier_usage.rst +++ b/doc/_src_docs/applications/Mixed_Hier_usage.rst @@ -88,6 +88,11 @@ The design space definition uses the framework of Audet et al. [2]_ to manage bo hierarchical variables. We distinguish dimensional (or meta) variables which are a special type of variables that may affect the dimension of the problem and decide if some other decreed variables are acting or non-acting. +Additionally, it is also possible to define value constraints that explicitly forbid two variables from having some +values simultaneously. This can be useful for modeling incompatibility relationships: for example, engines can't be +installed on the back of the fuselage (vs on the wings) if a normal tail (vs T-tail) is selected. Note: this feature +is only available if ConfigSpace has been installed: `pip install smt[cs]` + The hierarchy relationships are specified after instantiating the design space: @@ -120,6 +125,16 @@ The hierarchy relationships are specified after instantiating the design space: # Declare that x1 is acting if x0 == A ds.declare_decreed_var(decreed_var=1, meta_var=0, meta_value="A") + # Nested hierarchy is possible: activate x2 if x1 == C or D + # Note: only if ConfigSpace is installed! pip install smt[cs] + ds.declare_decreed_var(decreed_var=2, meta_var=1, meta_value=["C", "D"]) + + # It is also possible to explicitly forbid two values from occurring simultaneously + # Note: only if ConfigSpace is installed! pip install smt[cs] + ds.add_value_constraint( + var1=0, value1="A", var2=2, value2=[0, 1] + ) # Forbid x0 == A && x2 == 0 or 1 + # Sample the design space # Note: is_acting_sampled specifies for each design variable whether it is acting or not x_sampled, is_acting_sampled = ds.sample_valid_x(100) @@ -129,6 +144,7 @@ The hierarchy relationships are specified after instantiating the design space: np.array( [ [0, 0, 2, 0.25], + [0, 2, 1, 0.75], [1, 2, 1, 0.66], ] ) @@ -140,7 +156,18 @@ The hierarchy relationships are specified after instantiating the design space: == np.array( [ [True, True, True, True], - [True, False, True, True], # x1 is not acting if x0 != A + [ + True, + True, + False, + True, + ], # x2 is not acting if x1 != C or D (0 or 1) + [ + True, + False, + False, + True, + ], # x1 is not acting if x0 != A, and x2 is not acting because x1 is not acting ] ) ) @@ -149,8 +176,9 @@ The hierarchy relationships are specified after instantiating the design space: == np.array( [ [0, 0, 2, 0.25], - # x1 is not acting, so it is corrected ("imputed") to its non-acting value (0 for discrete vars) - [1, 0, 1, 0.66], + [0, 2, 0, 0.75], + # x2 is not acting, so it is corrected ("imputed") to its non-acting value (0 for discrete vars) + [1, 0, 0, 0.66], # x1 and x2 are imputed ] ) ) @@ -292,9 +320,10 @@ Example of mixed integer context usage # eval points. : 50 Predicting ... - Predicting - done. Time (sec): 0.0172906 + Predicting - done. Time (sec): 0.0031278 - Prediction time/pt. (sec) : 0.0003458 + Prediction time/pt. (sec) : 0.0000626 + .. figure:: Mixed_Hier_usage_TestMixedInteger_run_mixed_integer_context_example.png diff --git a/doc/_src_docs/applications/Mixed_Hier_usage.rstx b/doc/_src_docs/applications/Mixed_Hier_usage.rstx index 9820eb652..02f2d4b01 100644 --- a/doc/_src_docs/applications/Mixed_Hier_usage.rstx +++ b/doc/_src_docs/applications/Mixed_Hier_usage.rstx @@ -43,6 +43,11 @@ The design space definition uses the framework of Audet et al. [2]_ to manage bo hierarchical variables. We distinguish dimensional (or meta) variables which are a special type of variables that may affect the dimension of the problem and decide if some other decreed variables are acting or non-acting. +Additionally, it is also possible to define value constraints that explicitly forbid two variables from having some +values simultaneously. This can be useful for modeling incompatibility relationships: for example, engines can't be +installed on the back of the fuselage (vs on the wings) if a normal tail (vs T-tail) is selected. Note: this feature +is only available if ConfigSpace has been installed: `pip install smt[cs]` + The hierarchy relationships are specified after instantiating the design space: diff --git a/requirements.txt b/requirements.txt index cfd7b9813..b0b9ac9a7 100644 --- a/requirements.txt +++ b/requirements.txt @@ -7,4 +7,5 @@ numba # JIT compiler matplotlib # used in examples and tests pytest # tests runner pytest-xdist # allows running parallel testing with pytest -n -black # check code format \ No newline at end of file +black # check code format +ConfigSpace~=0.6.1 \ No newline at end of file diff --git a/setup.py b/setup.py index af45e8812..cf2c03245 100644 --- a/setup.py +++ b/setup.py @@ -112,6 +112,9 @@ "numba": [ # pip install smt[numba] "numba~=0.56.4", ], + "cs": [ # pip install smt[cs] + "ConfigSpace~=0.6.1", + ], }, python_requires=">=3.7", zip_safe=False, diff --git a/smt/applications/tests/test_ego.py b/smt/applications/tests/test_ego.py index 9595ffc39..b0af816df 100644 --- a/smt/applications/tests/test_ego.py +++ b/smt/applications/tests/test_ego.py @@ -997,8 +997,8 @@ def f_obj(X): n_start=15, ) x_opt, y_opt, dnk, x_data, y_data = ego.optimize(fun=f_obj) - self.assertAlmostEqual(np.sum(y_data), 2.03831406306514, delta=1e-4) - self.assertAlmostEqual(np.sum(x_data), 33.56885202767958, delta=1e-4) + self.assertAlmostEqual(np.sum(y_data), 2.7639515433083854, delta=1e-4) + self.assertAlmostEqual(np.sum(x_data), 32.11001423996299, delta=1e-4) def test_ego_gek(self): ego, fun = self.initialize_ego_gek() diff --git a/smt/applications/tests/test_mixed_integer.py b/smt/applications/tests/test_mixed_integer.py index b2f1ace60..abfaf972b 100644 --- a/smt/applications/tests/test_mixed_integer.py +++ b/smt/applications/tests/test_mixed_integer.py @@ -238,12 +238,10 @@ def test_cast_to_discrete_values(self): ) x = np.array([[2.6, 0.3, 0.5, 0.25, 0.45, 0.85, 3.1]]) - self.assertEqual( - np.array_equal( - np.array([[2.6, 0, 1, 0, 0, 1, 3]]), - design_space.correct_get_acting(x)[0], - ), - True, + np.testing.assert_allclose( + np.array([[2.6, 0, 1, 0, 0, 1, 3]]), + design_space.correct_get_acting(x)[0], + atol=1e-9, ) def test_cast_to_discrete_values_with_smooth_rounding_ordinal_values(self): @@ -257,12 +255,10 @@ def test_cast_to_discrete_values_with_smooth_rounding_ordinal_values(self): ] ) - self.assertEqual( - np.array_equal( - np.array([[2.6, 0, 1, 0, 0, 1, 1]]), - design_space.correct_get_acting(x)[0], - ), - True, + np.testing.assert_allclose( + np.array([[2.6, 0, 1, 0, 0, 1, 1]]), + design_space.correct_get_acting(x)[0], + atol=1e-9, ) def test_cast_to_discrete_values_with_hard_rounding_ordinal_values(self): @@ -276,12 +272,10 @@ def test_cast_to_discrete_values_with_hard_rounding_ordinal_values(self): ] ) - self.assertEqual( - np.array_equal( - np.array([[2.6, 0, 1, 0, 0, 1, 1]]), - design_space.correct_get_acting(x)[0], - ), - True, + np.testing.assert_allclose( + np.array([[2.6, 0, 1, 0, 0, 1, 1]]), + design_space.correct_get_acting(x)[0], + atol=1e-9, ) def test_cast_to_discrete_values_with_non_integer_ordinal_values(self): @@ -294,13 +288,10 @@ def test_cast_to_discrete_values_with_non_integer_ordinal_values(self): OrdinalVariable(["0", "3.5"]), ] ) - - self.assertEqual( - np.array_equal( - np.array([[2.6, 0, 1, 0, 0, 1, 1]]), - design_space.correct_get_acting(x)[0], - ), - True, + np.testing.assert_allclose( + np.array([[2.6, 0, 1, 0, 0, 1, 1]]), + design_space.correct_get_acting(x)[0], + atol=1e-9, ) def test_examples(self): @@ -334,7 +325,6 @@ def run_mixed_integer_lhs_example(self): num = 40 x, x_is_acting = design_space.sample_valid_x(num, random_state=42) - cmap = colors.ListedColormap(cat_var.values) plt.scatter(x[:, 0], np.zeros(num), c=x[:, 1], cmap=cmap) plt.show() @@ -624,6 +614,8 @@ def run_hierarchical_design_space_example(self): OrdinalVariable, CategoricalVariable, ) + from smt.applications.mixed_integer import MixedIntegerKrigingModel + from smt.surrogate_models import MixIntKernelType, MixHrcKernelType, KRG ds = DesignSpace( [ @@ -643,15 +635,27 @@ def run_hierarchical_design_space_example(self): # Declare that x1 is acting if x0 == A ds.declare_decreed_var(decreed_var=1, meta_var=0, meta_value="A") + # Nested hierarchy is possible: activate x2 if x1 == C or D + # Note: only if ConfigSpace is installed! pip install smt[cs] + ds.declare_decreed_var(decreed_var=2, meta_var=1, meta_value=["C", "D"]) + + # It is also possible to explicitly forbid two values from occurring simultaneously + # Note: only if ConfigSpace is installed! pip install smt[cs] + ds.add_value_constraint( + var1=0, value1="A", var2=2, value2=[0, 1] + ) # Forbid x0 == A && x2 == 0 or 1 + # Sample the design space # Note: is_acting_sampled specifies for each design variable whether it is acting or not - x_sampled, is_acting_sampled = ds.sample_valid_x(100, random_state=42) - + Xt, is_acting_sampled = ds.sample_valid_x(100, random_state=42) + rng = np.random.default_rng(42) + Yt = 4 * rng.random(100) - 2 + Xt[:, 0] + Xt[:, 1] - Xt[:, 2] - Xt[:, 3] # Correct design vectors: round discrete variables, correct hierarchical variables x_corr, is_acting = ds.correct_get_acting( np.array( [ [0, 0, 2, 0.25], + [0, 2, 1, 0.75], [1, 2, 1, 0.66], ] ) @@ -663,7 +667,18 @@ def run_hierarchical_design_space_example(self): == np.array( [ [True, True, True, True], - [True, False, True, True], # x1 is not acting if x0 != A + [ + True, + True, + False, + True, + ], # x2 is not acting if x1 != C or D (0 or 1) + [ + True, + False, + False, + True, + ], # x1 is not acting if x0 != A, and x2 is not acting because x1 is not acting ] ) ) @@ -672,12 +687,489 @@ def run_hierarchical_design_space_example(self): == np.array( [ [0, 0, 2, 0.25], - # x1 is not acting, so it is corrected ("imputed") to its non-acting value (0 for discrete vars) - [1, 0, 1, 0.66], + [0, 2, 0, 0.75], + # x2 is not acting, so it is corrected ("imputed") to its non-acting value (0 for discrete vars) + [1, 0, 0, 0.66], # x1 and x2 are imputed ] ) ) + sm = MixedIntegerKrigingModel( + surrogate=KRG( + design_space=ds, + categorical_kernel=MixIntKernelType.HOMO_HSPHERE, + hierarchical_kernel=MixHrcKernelType.ALG_KERNEL, + theta0=[1e-2], + corr="abs_exp", + n_start=5, + ), + ) + sm.set_training_values(Xt, Yt) + sm.train() + y_s = sm.predict_values(Xt)[:, 0] + pred_RMSE = np.linalg.norm(y_s - Yt) / len(Yt) + + y_sv = sm.predict_variances(Xt)[:, 0] + var_RMSE = np.linalg.norm(y_sv) / len(Yt) + self.assertTrue(pred_RMSE < 1e-7) + print("Pred_RMSE", pred_RMSE) + self.assertTrue( + np.linalg.norm( + sm.predict_values( + np.array( + [ + [0, 2, 1, 0.75], + [1, 2, 1, 0.66], + [0, 2, 1, 0.75], + ] + ) + )[:, 0] + - sm.predict_values( + np.array( + [ + [0, 2, 2, 0.75], + [1, 1, 2, 0.66], + [0, 2, 0, 0.75], + ] + ) + )[:, 0] + ) + < 1e-8 + ) + self.assertTrue( + np.linalg.norm( + sm.predict_values(np.array([[0, 0, 2, 0.25]])) + - sm.predict_values(np.array([[0, 0, 2, 0.8]])) + ) + > 1e-8 + ) + + def run_hierarchical_design_space_example_CR_categorical_decreed(self): + import numpy as np + from smt.utils.design_space import ( + DesignSpace, + FloatVariable, + IntegerVariable, + OrdinalVariable, + CategoricalVariable, + ) + from smt.applications.mixed_integer import MixedIntegerKrigingModel + from smt.surrogate_models import MixIntKernelType, MixHrcKernelType, KRG + + ds = DesignSpace( + [ + CategoricalVariable( + ["A", "B"] + ), # x0 categorical: A or B; order is not relevant + CategoricalVariable( + ["C", "D", "E"] + ), # x1 ordinal: C, D or E; order is relevant + CategoricalVariable( + ["tata", "tutu", "toto"] + ), # x2 integer between 0 and 2 (inclusive): 0, 1, 2 + FloatVariable(0, 1), # c3 continuous between 0 and 1 + ] + ) + + # Declare that x1 is acting if x0 == A + ds.declare_decreed_var(decreed_var=1, meta_var=0, meta_value="A") + + # Nested hierarchy is possible: activate x2 if x1 == C or D + # Note: only if ConfigSpace is installed! pip install smt[cs] + ds.declare_decreed_var(decreed_var=2, meta_var=1, meta_value=["C", "D"]) + + # It is also possible to explicitly forbid two values from occurring simultaneously + # Note: only if ConfigSpace is installed! pip install smt[cs] + # ds.add_value_constraint( + # var1=0, value1="A", var2=2, value2=["tata","tutu"] + # ) # Forbid x0 == A && x2 == 0 or 1 + + # Sample the design space + # Note: is_acting_sampled specifies for each design variable whether it is acting or not + Xt, is_acting_sampled = ds.sample_valid_x(100, random_state=42) + rng = np.random.default_rng(42) + Yt = 4 * rng.random(100) - 2 + Xt[:, 0] + Xt[:, 1] - Xt[:, 2] - Xt[:, 3] + # Correct design vectors: round discrete variables, correct hierarchical variables + x_corr, is_acting = ds.correct_get_acting( + np.array( + [ + [0, 0, 2, 0.25], + [0, 2, 1, 0.75], + [1, 2, 1, 0.66], + ] + ) + ) + + # Observe the hierarchical behavior: + self.assertTrue( + np.all( + is_acting + == np.array( + [ + [True, True, True, True], + [ + True, + True, + False, + True, + ], # x2 is not acting if x1 != C or D (0 or 1) + [ + True, + False, + False, + True, + ], # x1 is not acting if x0 != A, and x2 is not acting because x1 is not acting + ] + ) + ) + ) + self.assertTrue( + np.all( + x_corr + == np.array( + [ + [0, 0, 2, 0.25], + [0, 2, 0, 0.75], + # x2 is not acting, so it is corrected ("imputed") to its non-acting value (0 for discrete vars) + [1, 0, 0, 0.66], # x1 and x2 are imputed + ] + ) + ) + ) + + sm = MixedIntegerKrigingModel( + surrogate=KRG( + design_space=ds, + categorical_kernel=MixIntKernelType.CONT_RELAX, + hierarchical_kernel=MixHrcKernelType.ALG_KERNEL, + theta0=[1e-2], + corr="abs_exp", + n_start=5, + ), + ) + sm.set_training_values(Xt, Yt) + sm.train() + y_s = sm.predict_values(Xt)[:, 0] + pred_RMSE = np.linalg.norm(y_s - Yt) / len(Yt) + + y_sv = sm.predict_variances(Xt)[:, 0] + var_RMSE = np.linalg.norm(y_sv) / len(Yt) + + self.assertTrue( + np.linalg.norm( + sm.predict_values( + np.array( + [ + [0, 2, 1, 0.75], + [1, 2, 1, 0.66], + [0, 2, 1, 0.75], + ] + ) + )[:, 0] + - sm.predict_values( + np.array( + [ + [0, 2, 2, 0.75], + [1, 1, 2, 0.66], + [0, 2, 0, 0.75], + ] + ) + )[:, 0] + ) + < 1e-8 + ) + self.assertTrue( + np.linalg.norm( + sm.predict_values(np.array([[0, 0, 2, 0.25]])) + - sm.predict_values(np.array([[0, 0, 2, 0.8]])) + ) + > 1e-8 + ) + + def run_hierarchical_design_space_example_GD_categorical_decreed(self): + import numpy as np + from smt.utils.design_space import ( + DesignSpace, + FloatVariable, + IntegerVariable, + OrdinalVariable, + CategoricalVariable, + ) + from smt.applications.mixed_integer import MixedIntegerKrigingModel + from smt.surrogate_models import MixIntKernelType, MixHrcKernelType, KRG + + ds = DesignSpace( + [ + CategoricalVariable( + ["A", "B"] + ), # x0 categorical: A or B; order is not relevant + CategoricalVariable( + ["C", "D", "E"] + ), # x1 ordinal: C, D or E; order is relevant + CategoricalVariable( + ["tata", "tutu", "toto"] + ), # x2 integer between 0 and 2 (inclusive): 0, 1, 2 + FloatVariable(0, 1), # c3 continuous between 0 and 1 + ] + ) + + # Declare that x1 is acting if x0 == A + ds.declare_decreed_var(decreed_var=1, meta_var=0, meta_value="A") + + # Nested hierarchy is possible: activate x2 if x1 == C or D + # Note: only if ConfigSpace is installed! pip install smt[cs] + ds.declare_decreed_var(decreed_var=2, meta_var=1, meta_value=["C", "D"]) + + # It is also possible to explicitly forbid two values from occurring simultaneously + # Note: only if ConfigSpace is installed! pip install smt[cs] + # ds.add_value_constraint( + # var1=0, value1="A", var2=2, value2=["tata","tutu"] + # ) # Forbid x0 == A && x2 == 0 or 1 + + # Sample the design space + # Note: is_acting_sampled specifies for each design variable whether it is acting or not + Xt, is_acting_sampled = ds.sample_valid_x(100, random_state=42) + rng = np.random.default_rng(42) + Yt = 4 * rng.random(100) - 2 + Xt[:, 0] + Xt[:, 1] - Xt[:, 2] - Xt[:, 3] + # Correct design vectors: round discrete variables, correct hierarchical variables + x_corr, is_acting = ds.correct_get_acting( + np.array( + [ + [0, 0, 2, 0.25], + [0, 2, 1, 0.75], + [1, 2, 1, 0.66], + ] + ) + ) + + # Observe the hierarchical behavior: + self.assertTrue( + np.all( + is_acting + == np.array( + [ + [True, True, True, True], + [ + True, + True, + False, + True, + ], # x2 is not acting if x1 != C or D (0 or 1) + [ + True, + False, + False, + True, + ], # x1 is not acting if x0 != A, and x2 is not acting because x1 is not acting + ] + ) + ) + ) + self.assertTrue( + np.all( + x_corr + == np.array( + [ + [0, 0, 2, 0.25], + [0, 2, 0, 0.75], + # x2 is not acting, so it is corrected ("imputed") to its non-acting value (0 for discrete vars) + [1, 0, 0, 0.66], # x1 and x2 are imputed + ] + ) + ) + ) + + sm = MixedIntegerKrigingModel( + surrogate=KRG( + design_space=ds, + categorical_kernel=MixIntKernelType.GOWER, + hierarchical_kernel=MixHrcKernelType.ALG_KERNEL, + theta0=[1e-2], + corr="abs_exp", + n_start=5, + ), + ) + sm.set_training_values(Xt, Yt) + sm.train() + y_s = sm.predict_values(Xt)[:, 0] + pred_RMSE = np.linalg.norm(y_s - Yt) / len(Yt) + + y_sv = sm.predict_variances(Xt)[:, 0] + var_RMSE = np.linalg.norm(y_sv) / len(Yt) + + self.assertTrue( + np.linalg.norm( + sm.predict_values( + np.array( + [ + [0, 2, 1, 0.75], + [1, 2, 1, 0.66], + [0, 2, 1, 0.75], + ] + ) + )[:, 0] + - sm.predict_values( + np.array( + [ + [0, 2, 2, 0.75], + [1, 1, 2, 0.66], + [0, 2, 0, 0.75], + ] + ) + )[:, 0] + ) + < 1e-8 + ) + self.assertTrue( + np.linalg.norm( + sm.predict_values(np.array([[0, 0, 2, 0.25]])) + - sm.predict_values(np.array([[0, 0, 2, 0.8]])) + ) + > 1e-8 + ) + + def run_hierarchical_design_space_example_HH_categorical_decreed(self): + import numpy as np + from smt.utils.design_space import ( + DesignSpace, + FloatVariable, + IntegerVariable, + OrdinalVariable, + CategoricalVariable, + ) + from smt.applications.mixed_integer import MixedIntegerKrigingModel + from smt.surrogate_models import MixIntKernelType, MixHrcKernelType, KRG + + ds = DesignSpace( + [ + CategoricalVariable( + ["A", "B"] + ), # x0 categorical: A or B; order is not relevant + CategoricalVariable( + ["C", "D", "E"] + ), # x1 ordinal: C, D or E; order is relevant + CategoricalVariable( + ["tata", "tutu", "toto"] + ), # x2 integer between 0 and 2 (inclusive): 0, 1, 2 + FloatVariable(0, 1), # c3 continuous between 0 and 1 + ] + ) + + # Declare that x1 is acting if x0 == A + ds.declare_decreed_var(decreed_var=1, meta_var=0, meta_value="A") + + # Nested hierarchy is possible: activate x2 if x1 == C or D + # Note: only if ConfigSpace is installed! pip install smt[cs] + ds.declare_decreed_var(decreed_var=2, meta_var=1, meta_value=["C", "D"]) + + # It is also possible to explicitly forbid two values from occurring simultaneously + # Note: only if ConfigSpace is installed! pip install smt[cs] + # ds.add_value_constraint( + # var1=0, value1="A", var2=2, value2=["tata","tutu"] + # ) # Forbid x0 == A && x2 == 0 or 1 + + # Sample the design space + # Note: is_acting_sampled specifies for each design variable whether it is acting or not + Xt, is_acting_sampled = ds.sample_valid_x(100, random_state=42) + rng = np.random.default_rng(42) + Yt = 4 * rng.random(100) - 2 + Xt[:, 0] + Xt[:, 1] - Xt[:, 2] - Xt[:, 3] + # Correct design vectors: round discrete variables, correct hierarchical variables + x_corr, is_acting = ds.correct_get_acting( + np.array( + [ + [0, 0, 2, 0.25], + [0, 2, 1, 0.75], + [1, 2, 1, 0.66], + ] + ) + ) + + # Observe the hierarchical behavior: + self.assertTrue( + np.all( + is_acting + == np.array( + [ + [True, True, True, True], + [ + True, + True, + False, + True, + ], # x2 is not acting if x1 != C or D (0 or 1) + [ + True, + False, + False, + True, + ], # x1 is not acting if x0 != A, and x2 is not acting because x1 is not acting + ] + ) + ) + ) + self.assertTrue( + np.all( + x_corr + == np.array( + [ + [0, 0, 2, 0.25], + [0, 2, 0, 0.75], + # x2 is not acting, so it is corrected ("imputed") to its non-acting value (0 for discrete vars) + [1, 0, 0, 0.66], # x1 and x2 are imputed + ] + ) + ) + ) + + sm = MixedIntegerKrigingModel( + surrogate=KRG( + design_space=ds, + categorical_kernel=MixIntKernelType.HOMO_HSPHERE, + hierarchical_kernel=MixHrcKernelType.ALG_KERNEL, + theta0=[1e-2], + corr="abs_exp", + n_start=5, + ), + ) + sm.set_training_values(Xt, Yt) + sm.train() + y_s = sm.predict_values(Xt)[:, 0] + pred_RMSE = np.linalg.norm(y_s - Yt) / len(Yt) + + y_sv = sm.predict_variances(Xt)[:, 0] + var_RMSE = np.linalg.norm(y_sv) / len(Yt) + + self.assertTrue( + np.linalg.norm( + sm.predict_values( + np.array( + [ + [0, 2, 1, 0.75], + [1, 2, 1, 0.66], + [0, 2, 1, 0.75], + ] + ) + )[:, 0] + - sm.predict_values( + np.array( + [ + [0, 2, 2, 0.75], + [1, 1, 2, 0.66], + [0, 2, 0, 0.75], + ] + ) + )[:, 0] + ) + < 1e-8 + ) + self.assertTrue( + np.linalg.norm( + sm.predict_values(np.array([[0, 0, 2, 0.25]])) + - sm.predict_values(np.array([[0, 0, 2, 0.8]])) + ) + > 1e-8 + ) + def run_hierarchical_variables_Goldstein(self): import numpy as np from smt.utils.design_space import ( diff --git a/smt/surrogate_models/krg_based.py b/smt/surrogate_models/krg_based.py index e9b311a73..98fcc2e3e 100644 --- a/smt/surrogate_models/krg_based.py +++ b/smt/surrogate_models/krg_based.py @@ -253,6 +253,89 @@ def set_training_values( if is_acting is not None: self.is_acting_points[name] = is_acting + def _correct_distances_cat_decreed( + self, + D, + is_acting, + listcatdecreed, + ij, + is_acting_y=None, + mixint_type=MixIntKernelType.CONT_RELAX, + ): + indjcat = -1 + for j in listcatdecreed: + indjcat = indjcat + 1 + if j: + indicat = -1 + indices = 0 + for v in range(len(self.design_space.design_variables)): + if isinstance( + self.design_space.design_variables[v], CategoricalVariable + ): + indicat = indicat + 1 + if indicat == indjcat: + ia2 = np.zeros((len(ij), 2), dtype=bool) + if is_acting_y is None: + ia2 = (is_acting[:, self.cat_features][:, indjcat])[ij] + else: + ia2[:, 0] = ( + is_acting[:, self.cat_features][:, indjcat] + )[ij[:, 0]] + ia2[:, 1] = ( + is_acting_y[:, self.cat_features][:, indjcat] + )[ij[:, 1]] + + act_inact = ia2[:, 0] ^ ia2[:, 1] + act_act = ia2[:, 0] & ia2[:, 1] + + if mixint_type == MixIntKernelType.CONT_RELAX: + val_act = ( + np.array([1] * self.n_levels[indjcat]) + - self.X2_offset[ + indices : indices + self.n_levels[indjcat] + ] + ) / self.X2_scale[ + indices : indices + self.n_levels[indjcat] + ] - ( + np.array([0] * self.n_levels[indjcat]) + - self.X2_offset[ + indices : indices + self.n_levels[indjcat] + ] + ) / self.X2_scale[ + indices : indices + self.n_levels[indjcat] + ] + D[:, indices : indices + self.n_levels[indjcat]][ + act_inact + ] = val_act + D[:, indices : indices + self.n_levels[indjcat]][ + act_act + ] = ( + np.sqrt(2) + * D[:, indices : indices + self.n_levels[indjcat]][ + act_act + ] + ) + elif mixint_type == MixIntKernelType.GOWER: + D[:, indices : indices + 1][act_inact] = ( + self.n_levels[indjcat] * 0.5 + ) + D[:, indices : indices + 1][act_act] = ( + np.sqrt(2) * D[:, indices : indices + 1][act_act] + ) + + else: + raise ValueError( + "Continuous decreed kernel not implemented" + ) + else: + if mixint_type == MixIntKernelType.CONT_RELAX: + indices = indices + self.n_levels[indicat] + elif mixint_type == MixIntKernelType.GOWER: + indices = indices + 1 + else: + indices = indices + 1 + return D + def _new_train(self): # Sampling points X and y X = self.training_points[None][0][0] @@ -273,7 +356,7 @@ def _new_train(self): self.X_train = X self.is_acting_train = is_acting self._corr_params = None - + _, self.cat_features = compute_X_cont(self.X_train, self.design_space) if not (self.is_continuous): D, self.ij, X = gower_componentwise_distances( X=X, @@ -281,6 +364,20 @@ def _new_train(self): design_space=self.design_space, hierarchical_kernel=self.options["hierarchical_kernel"], ) + self.Lij, self.n_levels = cross_levels( + X=self.X_train, ij=self.ij, design_space=self.design_space + ) + listcatdecreed = self.design_space.is_conditionally_acting[ + self.cat_features + ] + if np.any(listcatdecreed): + D = self._correct_distances_cat_decreed( + D, + is_acting, + listcatdecreed, + self.ij, + mixint_type=MixIntKernelType.GOWER, + ) if self.options["categorical_kernel"] == MixIntKernelType.CONT_RELAX: X2, _ = self.design_space.unfold_x(self.training_points[None][0][0]) ( @@ -292,10 +389,21 @@ def _new_train(self): _, ) = standardization(X2, self.training_points[None][0][1]) D, _ = cross_distances(self.X2_norma) - self.Lij, self.n_levels = cross_levels( - X=self.X_train, ij=self.ij, design_space=self.design_space - ) - _, self.cat_features = compute_X_cont(self.X_train, self.design_space) + self.Lij, self.n_levels = cross_levels( + X=self.X_train, ij=self.ij, design_space=self.design_space + ) + listcatdecreed = self.design_space.is_conditionally_acting[ + self.cat_features + ] + if np.any(listcatdecreed): + D = self._correct_distances_cat_decreed( + D, + is_acting, + listcatdecreed, + self.ij, + mixint_type=MixIntKernelType.CONT_RELAX, + ) + # Center and scale X and y ( self.X_norma, @@ -1203,7 +1311,7 @@ def _predict_values(self, x: np.ndarray, is_acting=None) -> np.ndarray: if is_acting is None: x, is_acting = self.design_space.correct_get_acting(x) n_eval, n_features_x = x.shape - + _, ij = cross_distances(x, self.X_train) if not (self.is_continuous): dx = gower_componentwise_distances( x, @@ -1213,21 +1321,35 @@ def _predict_values(self, x: np.ndarray, is_acting=None) -> np.ndarray: y=np.copy(self.X_train), y_is_acting=self.is_acting_train, ) - - d = componentwise_distance( - dx, - self.options["corr"], - self.nx, - power=self.options["pow_exp_power"], - theta=None, - return_derivative=False, - ) - + listcatdecreed = self.design_space.is_conditionally_acting[ + self.cat_features + ] + if np.any(listcatdecreed): + dx = self._correct_distances_cat_decreed( + dx, + is_acting, + listcatdecreed, + ij, + is_acting_y=self.is_acting_train, + mixint_type=MixIntKernelType.GOWER, + ) if self.options["categorical_kernel"] == MixIntKernelType.CONT_RELAX: Xpred, _ = self.design_space.unfold_x(x) Xpred_norma = (Xpred - self.X2_offset) / self.X2_scale dx = differences(Xpred_norma, Y=self.X2_norma.copy()) - _, ij = cross_distances(x, self.X_train) + listcatdecreed = self.design_space.is_conditionally_acting[ + self.cat_features + ] + + if np.any(listcatdecreed): + dx = self._correct_distances_cat_decreed( + dx, + is_acting, + listcatdecreed, + ij, + is_acting_y=self.is_acting_train, + mixint_type=MixIntKernelType.CONT_RELAX, + ) Lij, _ = cross_levels( X=x, ij=ij, design_space=self.design_space, y=self.X_train ) @@ -1374,7 +1496,7 @@ def _predict_variances(self, x: np.ndarray, is_acting=None) -> np.ndarray: x, is_acting = self.design_space.correct_get_acting(x) n_eval, n_features_x = x.shape X_cont = x - + _, ij = cross_distances(x, self.X_train) if not (self.is_continuous): dx = gower_componentwise_distances( x, @@ -1384,11 +1506,35 @@ def _predict_variances(self, x: np.ndarray, is_acting=None) -> np.ndarray: y=np.copy(self.X_train), y_is_acting=self.is_acting_train, ) + listcatdecreed = self.design_space.is_conditionally_acting[ + self.cat_features + ] + if np.any(listcatdecreed): + dx = self._correct_distances_cat_decreed( + dx, + is_acting, + listcatdecreed, + ij, + is_acting_y=self.is_acting_train, + mixint_type=MixIntKernelType.GOWER, + ) if self.options["categorical_kernel"] == MixIntKernelType.CONT_RELAX: Xpred, _ = self.design_space.unfold_x(x) Xpred_norma = (Xpred - self.X2_offset) / self.X2_scale dx = differences(Xpred_norma, Y=self.X2_norma.copy()) - _, ij = cross_distances(x, self.X_train) + listcatdecreed = self.design_space.is_conditionally_acting[ + self.cat_features + ] + if np.any(listcatdecreed): + dx = self._correct_distances_cat_decreed( + dx, + is_acting, + listcatdecreed, + ij, + is_acting_y=self.is_acting_train, + mixint_type=MixIntKernelType.CONT_RELAX, + ) + Lij, _ = cross_levels( X=x, ij=ij, design_space=self.design_space, y=self.X_train ) diff --git a/smt/utils/design_space.py b/smt/utils/design_space.py index 24d8df442..33ea4c9df 100644 --- a/smt/utils/design_space.py +++ b/smt/utils/design_space.py @@ -9,6 +9,34 @@ from smt.sampling_methods import LHS +try: + from ConfigSpace import ( + ConfigurationSpace, + Configuration, + UniformIntegerHyperparameter, + UniformFloatHyperparameter, + CategoricalHyperparameter, + OrdinalHyperparameter, + EqualsCondition, + InCondition, + ForbiddenEqualsClause, + ForbiddenInClause, + ForbiddenAndConjunction, + ) + from ConfigSpace.exceptions import ForbiddenValueError + from ConfigSpace.util import get_random_neighbor + + HAS_CONFIG_SPACE = True + +except ImportError: + HAS_CONFIG_SPACE = False + + class ConfigurationSpace: + pass + + class UniformIntegerHyperparameter: + pass + def ensure_design_space(xt=None, xlimits=None, design_space=None) -> "BaseDesignSpace": """Interface to turn legacy input formats into a DesignSpace""" @@ -20,7 +48,7 @@ def ensure_design_space(xt=None, xlimits=None, design_space=None) -> "BaseDesign return DesignSpace(xlimits) if xt is not None: - return DesignSpace([[0, 1]] * xt.shape[1]) + return DesignSpace([[np.min(xt) - 0.99, np.max(xt) + 1e-4]] * xt.shape[1]) raise ValueError("Nothing defined that could be interpreted as a design space!") @@ -321,6 +349,7 @@ def sample_valid_x( """ # Sample from the design space + x, is_acting = self._sample_valid_x(n, random_state=random_state) # Check conditionally-acting status @@ -375,7 +404,10 @@ def get_unfolded_num_bounds(self): return np.array(unfolded_x_limits).astype(float) def fold_x( - self, x: np.ndarray, is_acting: np.ndarray = None + self, + x: np.ndarray, + is_acting: np.ndarray = None, + fold_mask: np.ndarray = None, ) -> Tuple[np.ndarray, Optional[np.ndarray]]: """ Fold x and optionally is_acting. Folding reverses the one-hot encoding of categorical variables applied by @@ -387,6 +419,8 @@ def fold_x( - Unfolded samples is_acting: np.ndarray [n, dim_unfolded] - Boolean matrix specifying for each unfolded variable whether it is acting or non-acting + fold_mask: np.ndarray [dim_folded] + - Mask specifying which design variables to apply folding for Returns ------- @@ -405,7 +439,9 @@ def fold_x( i_x_unfold = 0 for i, dv in enumerate(self.design_variables): - if isinstance(dv, CategoricalVariable): + if isinstance(dv, CategoricalVariable) and ( + fold_mask is None or fold_mask[i] + ): n_dim_cat = dv.n_values # Categorical values are folded by reversed one-hot encoding: @@ -429,7 +465,7 @@ def fold_x( return x_folded, is_acting_folded def unfold_x( - self, x: np.ndarray, is_acting: np.ndarray = None + self, x: np.ndarray, is_acting: np.ndarray = None, fold_mask: np.ndarray = None ) -> Tuple[np.ndarray, Optional[np.ndarray]]: """ Unfold x and optionally is_acting. Unfolding creates one extra dimension for each categorical variable using @@ -441,6 +477,8 @@ def unfold_x( - Folded samples is_acting: np.ndarray [n, dim] - Boolean matrix specifying for each variable whether it is acting or non-acting + fold_mask: np.ndarray [dim_folded] + - Mask specifying which design variables to apply folding for Returns ------- @@ -460,7 +498,9 @@ def unfold_x( i_x_unfold = 0 for i, dv in enumerate(self.design_variables): - if isinstance(dv, CategoricalVariable): + if isinstance(dv, CategoricalVariable) and ( + fold_mask is None or fold_mask[i] + ): n_dim_cat = dv.n_values x_cat = x_unfolded[:, i_x_unfold : i_x_unfold + n_dim_cat] @@ -485,6 +525,10 @@ def unfold_x( is_acting_unfolded[:, i_x_unfold] = is_acting[:, i] i_x_unfold += 1 + x_unfolded = x_unfolded[:, :i_x_unfold] + if is_acting is not None: + is_acting_unfolded = is_acting_unfolded[:, :i_x_unfold] + return x_unfolded, is_acting_unfolded def _get_n_dim_unfolded(self) -> int: @@ -578,8 +622,8 @@ def raise_config_space(): class DesignSpace(BaseDesignSpace): """ - Class for defining a (hierarchical) design space by defining design variables, and defining decreed variables - (optional). + Class for defining a (hierarchical) design space by defining design variables, defining decreed variables + (optional), and adding value constraints (optional). Numerical bounds can be requested using `get_num_bounds()`. If needed, it is possible to get the legacy SMT < 2.0 `xlimits` format using `get_x_limits()`. @@ -607,20 +651,28 @@ class DesignSpace(BaseDesignSpace): >>> ds.declare_decreed_var(decreed_var=1, meta_var=0, meta_value='A') # Activate x1 if x0 == A + Decreed variables can be chained (however no cycles and no "diamonds" are supported): + Note: only if ConfigSpace is installed! pip install smt[cs] + >>> ds.declare_decreed_var(decreed_var=2, meta_var=1, meta_value=['C', 'D']) # Activate x2 if x1 == C or D + + If combinations of values between two variables are not allowed, this can be done using a value constraint: + Note: only if ConfigSpace is installed! pip install smt[cs] + >>> ds.add_value_constraint(var1=0, value1='A', var2=2, value2=[0, 1]) # Forbid x0 == A && x2 == 0 or 1 + After defining everything correctly, you can then use the design space object to correct design vectors and get information about which design variables are acting: >>> x_corr, is_acting = ds.correct_get_acting(np.array([ >>> [0, 0, 2, .25], - >>> [1, 2, 1, .75], + >>> [0, 2, 1, .75], >>> ])) >>> assert np.all(x_corr == np.array([ >>> [0, 0, 2, .25], - >>> [1, 0, 1, .75], + >>> [0, 2, 0, .75], >>> ])) >>> assert np.all(is_acting == np.array([ >>> [True, True, True, True], - >>> [True, False, True, True], # x1 is not acting if x0 != A + >>> [True, True, False, True], # x2 is not acting if x1 != C or D (0 or 1) >>> ])) It is also possible to randomly sample design vectors conforming to the constraints: @@ -666,6 +718,30 @@ def _is_num(val): converted_dvs.append(FloatVariable(bounds[0], bounds[1])) design_variables = converted_dvs + self.seed = seed # For testing + + self._cs = None + if HAS_CONFIG_SPACE: + cs_vars = {} + for i, dv in enumerate(design_variables): + name = f"x{i}" + if isinstance(dv, FloatVariable): + cs_vars[name] = UniformFloatHyperparameter( + name, lower=dv.lower, upper=dv.upper + ) + elif isinstance(dv, IntegerVariable): + cs_vars[name] = FixedIntegerParam( + name, lower=dv.lower, upper=dv.upper + ) + elif isinstance(dv, OrdinalVariable): + cs_vars[name] = OrdinalHyperparameter(name, sequence=dv.values) + elif isinstance(dv, CategoricalVariable): + cs_vars[name] = CategoricalHyperparameter(name, choices=dv.values) + else: + raise ValueError(f"Unknown variable type: {dv!r}") + + self._cs = NoDefaultConfigurationSpace(space=cs_vars, seed=seed) + self._meta_vars = ( {} ) # dict[int, dict[any, list[int]]]: {meta_var_idx: {value: [decreed_var_idx, ...], ...}, ...} @@ -689,34 +765,119 @@ def declare_decreed_var( - The value or list of values that the meta variable can have to activate the decreed var """ - # Variables cannot be both meta and decreed at the same time - if self._is_decreed[meta_var]: - raise RuntimeError( - f"Variable cannot be both meta and decreed ({meta_var})!" - ) + # ConfigSpace implementation + if self._cs is not None: + # Get associated parameters + decreed_param = self._get_param(decreed_var) + meta_param = self._get_param(meta_var) + + # Add a condition that checks for equality (if single value given) or in-collection (if sequence given) + if isinstance(meta_value, Sequence): + condition = InCondition(decreed_param, meta_param, meta_value) + else: + condition = EqualsCondition(decreed_param, meta_param, meta_value) + + self._cs.add_condition(condition) + + # Simplified implementation + else: + # Variables cannot be both meta and decreed at the same time + if self._is_decreed[meta_var]: + raise RuntimeError( + f"Variable cannot be both meta and decreed ({meta_var})!" + ) - # Variables can only be decreed by one meta var - if self._is_decreed[decreed_var]: - raise RuntimeError(f"Variable is already decreed: {decreed_var}") + # Variables can only be decreed by one meta var + if self._is_decreed[decreed_var]: + raise RuntimeError(f"Variable is already decreed: {decreed_var}") - # Define meta-decreed relationship - if meta_var not in self._meta_vars: - self._meta_vars[meta_var] = {} + # Define meta-decreed relationship + if meta_var not in self._meta_vars: + self._meta_vars[meta_var] = {} - meta_var_obj = self.design_variables[meta_var] - for value in meta_value if isinstance(meta_value, Sequence) else [meta_value]: - encoded_value = value - if isinstance(meta_var_obj, (OrdinalVariable, CategoricalVariable)): - if value in meta_var_obj.values: - encoded_value = meta_var_obj.values.index(value) + meta_var_obj = self.design_variables[meta_var] + for value in ( + meta_value if isinstance(meta_value, Sequence) else [meta_value] + ): + encoded_value = value + if isinstance(meta_var_obj, (OrdinalVariable, CategoricalVariable)): + if value in meta_var_obj.values: + encoded_value = meta_var_obj.values.index(value) - if encoded_value not in self._meta_vars[meta_var]: - self._meta_vars[meta_var][encoded_value] = [] - self._meta_vars[meta_var][encoded_value].append(decreed_var) + if encoded_value not in self._meta_vars[meta_var]: + self._meta_vars[meta_var][encoded_value] = [] + self._meta_vars[meta_var][encoded_value].append(decreed_var) # Mark as decreed (conditionally acting) self._is_decreed[decreed_var] = True + def add_value_constraint( + self, var1: int, value1: VarValueType, var2: int, value2: VarValueType + ): + """ + Define a constraint where two variables cannot have the given values at the same time. + + Parameters + ---------- + var1: int + - Index of the first variable + value1: int | str | list[int|str] + - Value or values that the first variable is checked against + var2: int + - Index of the second variable + value2: int | str | list[int|str] + - Value or values that the second variable is checked against + """ + if self._cs is None: + raise_config_space() + + # Get parameters + param1 = self._get_param(var1) + param2 = self._get_param(var2) + + # Add forbidden clauses + if isinstance(value1, Sequence): + clause1 = ForbiddenInClause(param1, value1) + else: + clause1 = ForbiddenEqualsClause(param1, value1) + + if isinstance(value2, Sequence): + clause2 = ForbiddenInClause(param2, value2) + else: + clause2 = ForbiddenEqualsClause(param2, value2) + + constraint_clause = ForbiddenAndConjunction(clause1, clause2) + self._cs.add_forbidden_clause(constraint_clause) + + def _get_param(self, idx): + try: + return self._cs.get_hyperparameter(f"x{idx}") + except KeyError: + raise KeyError(f"Variable not found: {idx}") + + @property + def _cs_var_idx(self): + """ + ConfigurationSpace applies topological sort when adding conditions, so compared to what we expect the order of + parameters might have changed. + + This property contains the indices of the params in the ConfigurationSpace. + """ + names = self._cs.get_hyperparameter_names() + return np.array( + [names.index(f"x{ix}") for ix in range(len(self.design_variables))] + ) + + @property + def _inv_cs_var_idx(self): + """ + See _cs_var_idx. This function returns the opposite mapping: the positions of our design variables for each + param. + """ + return np.array( + [int(param[1:]) for param in self._cs.get_hyperparameter_names()] + ) + def _is_conditionally_acting(self) -> np.ndarray: # Decreed variables are the conditionally acting variables return self._is_decreed @@ -724,10 +885,24 @@ def _is_conditionally_acting(self) -> np.ndarray: def _correct_get_acting(self, x: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Correct and impute design vectors""" + if self._cs is not None: + # Normalize value according to what ConfigSpace expects + x = x.astype(float) + self._normalize_x(x) + + # Get corrected Configuration objects by mapping our design vectors to the ordering of the ConfigurationSpace + inv_cs_var_idx = self._inv_cs_var_idx + configs = [] + for xi in x: + configs.append(self._get_correct_config(xi[inv_cs_var_idx])) + + # Convert Configuration objects to design vectors and get the is_active matrix + return self._configs_to_x(configs) + # Simplified implementation # Correct discrete variables x_corr = x.copy() - self._normalize_x(x_corr) + self._normalize_x(x_corr, cs_normalize=False) # Determine which variables are acting is_acting = np.ones(x_corr.shape, dtype=bool) @@ -748,21 +923,90 @@ def _sample_valid_x( self, n: int, random_state=None ) -> Tuple[np.ndarray, np.ndarray]: """Sample design vectors""" - # Simplified implementation: sample design vectors in unfolded space x_limits_unfolded = self.get_unfolded_num_bounds() - if self.sampler is None: - self.sampler = LHS( - xlimits=x_limits_unfolded, random_state=random_state, criterion="ese" - ) - x = self.sampler(n) + if self.seed is None: + self.seed = random_state + + if self._cs is not None: + # Sample Configuration objects + self._cs.seed(self.seed) + if self.seed is not None: + self.seed += 1 + configs = self._cs.sample_configuration(n) + if n == 1: + configs = [configs] + # Convert Configuration objects to design vectors and get the is_active matrix + return self._configs_to_x(configs) + + else: + if self.sampler is None: + self.sampler = LHS( + xlimits=x_limits_unfolded, + random_state=random_state, + criterion="ese", + ) + x = self.sampler(n) + # Fold and cast to discrete + x, _ = self.fold_x(x) + self._normalize_x(x, cs_normalize=False) + # Get acting information and impute + return self.correct_get_acting(x) + + def _get_correct_config(self, vector: np.ndarray) -> Configuration: + config = Configuration(self._cs, vector=vector) + + # Unfortunately we cannot directly ask which parameters SHOULD be active + # https://github.com/automl/ConfigSpace/issues/253#issuecomment-1513216665 + # Therefore, we temporarily fix it with a very dirty workaround: catch the error raised in check_configuration + # to find out which parameters should be inactive + while True: + try: + config.is_valid_configuration() + return config + + except ValueError as e: + error_str = str(e) + if "Inactive hyperparameter" in error_str: + # Deduce which parameter is inactive + inactive_param_name = error_str.split("'")[1] + param_idx = self._cs.get_idx_by_hyperparameter_name( + inactive_param_name + ) + + # Modify the vector and create a new Configuration + vector = config.get_array().copy() + vector[param_idx] = np.nan + config = Configuration(self._cs, vector=vector) + + # At this point, the parameter active statuses are set correctly, so we only need to correct the + # configuration to one that does not violate the forbidden clauses + elif isinstance(e, ForbiddenValueError): + return get_random_neighbor(config, seed=self.seed) + + else: + raise + + def _configs_to_x( + self, configs: List["Configuration"] + ) -> Tuple[np.ndarray, np.ndarray]: + x = np.zeros((len(configs), len(self.design_variables))) + is_acting = np.zeros(x.shape, dtype=bool) + if len(configs) == 0: + return x, is_acting + + cs_var_idx = self._cs_var_idx + for i, config in enumerate(configs): + x[i, :] = config.get_array()[cs_var_idx] - # Fold and cast to discrete - x, _ = self.fold_x(x) - self._normalize_x(x) + # De-normalize continuous and integer variables + self._cs_denormalize_x(x) - # Get acting information and impute - return self.correct_get_acting(x) + # Set is_active flags and impute x + is_acting = np.isfinite(x) + self._impute_non_acting(x, is_acting) + + return x, is_acting def _impute_non_acting(self, x: np.ndarray, is_acting: np.ndarray): for i, dv in enumerate(self.design_variables): @@ -778,20 +1022,76 @@ def _impute_non_acting(self, x: np.ndarray, is_acting: np.ndarray): x[~is_acting[:, i], i] = lower - def _normalize_x(self, x: np.ndarray): + def _normalize_x(self, x: np.ndarray, cs_normalize=True): for i, dv in enumerate(self.design_variables): - if isinstance(dv, IntegerVariable): + if isinstance(dv, FloatVariable): + if cs_normalize: + x[:, i] = np.clip( + (x[:, i] - dv.lower) / (dv.upper - dv.lower + 1e-16), 0, 1 + ) + + elif isinstance(dv, IntegerVariable): x[:, i] = self._round_equally_distributed(x[:, i], dv.lower, dv.upper) + if cs_normalize: + # After rounding, normalize between 0 and 1, where 0 and 1 represent the stretched bounds + x[:, i] = (x[:, i] - dv.lower + 0.49999) / ( + dv.upper - dv.lower + 0.9999 + ) + elif isinstance(dv, (OrdinalVariable, CategoricalVariable)): # To ensure equal distribution of continuous values to discrete values, we first stretch-out the # continuous values to extend to 0.5 beyond the integer limits and then round. This ensures that the # values at the limits get a large-enough share of the continuous values x[:, i] = self._round_equally_distributed(x[:, i], dv.lower, dv.upper) + def _cs_denormalize_x(self, x: np.ndarray): + for i, dv in enumerate(self.design_variables): + if isinstance(dv, FloatVariable): + x[:, i] = x[:, i] * (dv.upper - dv.lower) + dv.lower + + elif isinstance(dv, IntegerVariable): + # Integer values are normalized similarly to what is done in _round_equally_distributed + x[:, i] = np.round( + x[:, i] * (dv.upper - dv.lower + 0.9999) + dv.lower - 0.49999 + ) + def __str__(self): dvs = "\n".join([f"x{i}: {dv!s}" for i, dv in enumerate(self.design_variables)]) return f"Design space:\n{dvs}" def __repr__(self): return f"{self.__class__.__name__}({self.design_variables!r})" + + +class NoDefaultConfigurationSpace(ConfigurationSpace): + """ConfigurationSpace that supports no default configuration""" + + def get_default_configuration(self, *args, **kwargs): + raise NotImplementedError + + def _check_default_configuration(self, *args, **kwargs): + pass + + +class FixedIntegerParam(UniformIntegerHyperparameter): + def get_neighbors( + self, + value: float, + rs: np.random.RandomState, + number: int = 4, + transform: bool = False, + std: float = 0.2, + ) -> List[int]: + # Temporary fix until https://github.com/automl/ConfigSpace/pull/313 is released + center = self._transform(value) + lower, upper = self.lower, self.upper + if upper - lower - 1 < number: + neighbors = sorted(set(range(lower, upper + 1)) - {center}) + if transform: + return neighbors + return self._inverse_transform(np.asarray(neighbors)).tolist() + + return super().get_neighbors( + value, rs, number=number, transform=transform, std=std + ) diff --git a/smt/utils/kriging.py b/smt/utils/kriging.py index a0560c62f..0f600f097 100644 --- a/smt/utils/kriging.py +++ b/smt/utils/kriging.py @@ -299,17 +299,11 @@ def gower_componentwise_distances( Y_cat = Z_cat[y_index,] x_cat_is_acting = z_cat_is_acting[x_index,] y_cat_is_acting = z_cat_is_acting[y_index,] - - # To support categorical decreed variables, some extra math wizardry is needed - if np.any(cat_is_decreed) or np.any(~x_cat_is_acting) or np.any(~y_cat_is_acting): - raise ValueError( - "Decreed (conditionally-active) categorical variables are not supported yet!" - ) - # This is to normalize the numeric values between 0 and 1. Z_num = Z[:, ~cat_features] z_num_is_acting = z_is_acting[:, ~cat_features] num_is_decreed = is_decreed[~cat_features] + cat_is_decreed = is_decreed[cat_features] num_bounds = design_space.get_num_bounds()[~cat_features, :] if num_bounds.shape[0] > 0: Z_offset = num_bounds[:, 0] @@ -321,6 +315,8 @@ def gower_componentwise_distances( x_num_is_acting = z_num_is_acting[x_index,] y_num_is_acting = z_num_is_acting[y_index,] + # x_cat_is_acting : activeness vector delta + # X_cat( not(x_cat_is_acting)) = 0 ###IMPUTED TO FIRST VALUE IN LIST (index 0) D_cat = compute_D_cat(X_cat, Y_cat, y) D_num, ij = compute_D_num( X_num, diff --git a/smt/utils/test/test_design_space.py b/smt/utils/test/test_design_space.py index 1a2d46aec..cb6523c0a 100644 --- a/smt/utils/test/test_design_space.py +++ b/smt/utils/test/test_design_space.py @@ -3,6 +3,7 @@ """ import unittest import itertools +import contextlib import numpy as np from smt.sampling_methods import LHS from smt.utils.design_space import ( @@ -12,7 +13,19 @@ CategoricalVariable, BaseDesignSpace, DesignSpace, + HAS_CONFIG_SPACE, ) +import smt.utils.design_space as ds + + +@contextlib.contextmanager +def simulate_no_config_space(do_simulate=True): + if ds.HAS_CONFIG_SPACE and do_simulate: + ds.HAS_CONFIG_SPACE = False + yield + ds.HAS_CONFIG_SPACE = True + else: + yield class Test(unittest.TestCase): @@ -145,23 +158,36 @@ def test_base_design_space(self): ) ) self.assertEqual(is_acting_unfolded.dtype, bool) - self.assertTrue( - np.all( - is_acting_unfolded - == [ - [True, True, True, False], - [True, True, False, True], - [False, False, True, True], - ] - ) + np.testing.assert_array_equal( + is_acting_unfolded, + [ + [True, True, True, False], + [True, True, False, True], + [False, False, True, True], + ], ) x_folded, is_acting_folded = ds.fold_x(x_unfolded, is_acting_unfolded) - self.assertTrue(np.all(x_folded == x)) - self.assertTrue(np.all(is_acting_folded == is_acting)) + np.testing.assert_array_equal(x_folded, x) + np.testing.assert_array_equal(is_acting_folded, is_acting) + + x_unfold_mask, is_act_unfold_mask = ds.unfold_x( + x, is_acting, fold_mask=np.array([False] * 3) + ) + np.testing.assert_array_equal(x_unfold_mask, x) + np.testing.assert_array_equal(is_act_unfold_mask, is_acting) + + x_fold_mask, is_act_fold_mask = ds.fold_x( + x, is_acting, fold_mask=np.array([False] * 3) + ) + np.testing.assert_array_equal(x_fold_mask, x) + + np.testing.assert_array_equal(is_act_fold_mask, is_acting) def test_create_design_space(self): DesignSpace([FloatVariable(0, 1)]) + with simulate_no_config_space(): + DesignSpace([FloatVariable(0, 1)]) def test_design_space(self): ds = DesignSpace( @@ -174,17 +200,34 @@ def test_design_space(self): seed=42, ) self.assertEqual(len(ds.design_variables), 4) + if HAS_CONFIG_SPACE: + self.assertEqual(len(ds._cs.get_hyperparameters()), 4) self.assertTrue(np.all(~ds.is_conditionally_acting)) + if HAS_CONFIG_SPACE: + x, is_acting = ds.sample_valid_x(3, random_state=42) + self.assertEqual(x.shape, (3, 4)) + np.testing.assert_allclose( + x, + np.array( + [ + [1.0, 0.0, -0.0, 0.83370861], + [2.0, 0.0, -1.0, 0.64286682], + [2.0, 0.0, -0.0, 1.15088847], + ] + ), + atol=1e-8, + ) + else: + ds.sample_valid_x(3, random_state=42) + x = np.array( + [ + [1, 0, 0, 0.834], + [2, 0, -1, 0.6434], + [2, 0, 0, 1.151], + ] + ) + x, is_acting = ds.correct_get_acting(x) - ds.sample_valid_x(3, random_state=42) - x = np.array( - [ - [1, 0, 0, 0.834], - [2, 0, -1, 0.6434], - [2, 0, 0, 1.151], - ] - ) - x, is_acting = ds.correct_get_acting(x) self.assertEqual(x.shape, (3, 4)) self.assertEqual(is_acting.shape, x.shape) @@ -193,14 +236,14 @@ def test_design_space(self): self.assertEqual(ds.decode_values(np.array([0, 1, 2]), i_dv=0), ["A", "B", "C"]) self.assertEqual(ds.decode_values(np.array([0, 1]), i_dv=1), ["E", "F"]) - self.assertEqual(ds.decode_values(x[0, :]), ["B", "E", 0, 0.834]) - self.assertEqual(ds.decode_values(x[[0], :]), [["B", "E", 0, 0.834]]) + self.assertEqual(ds.decode_values(x[0, :]), ["B", "E", 0, x[0, 3]]) + self.assertEqual(ds.decode_values(x[[0], :]), [["B", "E", 0, x[0, 3]]]) self.assertEqual( ds.decode_values(x), [ - ["B", "E", 0, 0.834], - ["C", "E", -1, 0.6434], - ["C", "E", 0, 1.151], + ["B", "E", 0, x[0, 3]], + ["C", "E", -1, x[1, 3]], + ["C", "E", 0, x[2, 3]], ], ) @@ -213,20 +256,16 @@ def test_design_space(self): )(3) x_corr, is_acting_corr = ds.correct_get_acting(x_sampled_externally) x_corr, is_acting_corr = ds.fold_x(x_corr, is_acting_corr) - self.assertTrue( - np.all( - np.abs( - x_corr - - np.array( - [ - [2, 0, -1, 1.342], - [0, 1, 0, 0.552], - [1, 1, 2, 1.157], - ] - ) - ) - < 1e-3 - ) + np.testing.assert_allclose( + x_corr, + np.array( + [ + [2.0, 0.0, -1.0, 1.34158548], + [0.0, 1.0, -0.0, 0.55199817], + [1.0, 1.0, 2.0, 1.15663662], + ] + ), + atol=1e-8, ) self.assertTrue(np.all(is_acting_corr)) @@ -234,12 +273,48 @@ def test_design_space(self): 3, unfolded=True, random_state=42 ) self.assertEqual(x_unfolded.shape, (3, 6)) + if HAS_CONFIG_SPACE: + np.testing.assert_allclose( + x_unfolded, + np.array( + [ + [1.0, 0.0, 0.0, 0.0, 2.0, 1.11213215], + [0.0, 1.0, 0.0, 1.0, -1.0, 1.09482857], + [1.0, 0.0, 0.0, 1.0, -1.0, 0.75061044], + ] + ), + atol=1e-8, + ) self.assertTrue(str(ds)) self.assertTrue(repr(ds)) ds.correct_get_acting(np.array([[0, 0, 0, 1.6]])) + def test_folding_mask(self): + ds = DesignSpace( + [ + CategoricalVariable(["A", "B", "C"]), + CategoricalVariable(["A", "B", "C"]), + ] + ) + x = np.array([[1, 2]]) + is_act = np.array([[True, False]]) + + self.assertEqual(ds._get_n_dim_unfolded(), 6) + + x_unfolded, is_act_unfolded = ds.unfold_x(x, is_act, np.array([True, False])) + self.assertTrue(np.all(x_unfolded == np.array([[0, 1, 0, 2]]))) + self.assertTrue( + np.all(is_act_unfolded == np.array([[True, True, True, False]])) + ) + + x_folded, is_act_folded = ds.fold_x( + x_unfolded, is_act_unfolded, np.array([True, False]) + ) + self.assertTrue(np.all(x_folded == x)) + self.assertTrue(np.all(is_act_folded == is_act)) + def test_float_design_space(self): ds = DesignSpace([(0, 1), (0.5, 2.5), (-0.4, 10)]) assert ds.n_dv == 3 @@ -282,55 +357,51 @@ def test_design_space_hierarchical(self): x, is_acting = ds.correct_get_acting(x_cartesian) _, is_unique = np.unique(x, axis=0, return_index=True) self.assertEqual(len(is_unique), 16) - self.assertTrue( - np.all( - x[is_unique, :] - == np.array( - [ - [0, 0, 0, 0.25], - [0, 0, 0, 0.75], - [0, 0, 1, 0.25], - [0, 0, 1, 0.75], - [0, 1, 0, 0.25], - [0, 1, 0, 0.75], - [0, 1, 1, 0.25], - [0, 1, 1, 0.75], - [1, 0, 0, 0.5], - [1, 0, 1, 0.5], - [1, 1, 0, 0.5], - [1, 1, 1, 0.5], - [2, 0, 0, 0.5], - [2, 0, 1, 0.5], - [2, 1, 0, 0.5], - [2, 1, 1, 0.5], - ] - ) - ) + np.testing.assert_allclose( + x[is_unique, :], + np.array( + [ + [0, 0, 0, 0.25], + [0, 0, 0, 0.75], + [0, 0, 1, 0.25], + [0, 0, 1, 0.75], + [0, 1, 0, 0.25], + [0, 1, 0, 0.75], + [0, 1, 1, 0.25], + [0, 1, 1, 0.75], + [1, 0, 0, 0.5], + [1, 0, 1, 0.5], + [1, 1, 0, 0.5], + [1, 1, 1, 0.5], + [2, 0, 0, 0.5], + [2, 0, 1, 0.5], + [2, 1, 0, 0.5], + [2, 1, 1, 0.5], + ] + ), ) - self.assertTrue( - np.all( - is_acting[is_unique, :] - == np.array( - [ - [True, True, True, True], - [True, True, True, True], - [True, True, True, True], - [True, True, True, True], - [True, True, True, True], - [True, True, True, True], - [True, True, True, True], - [True, True, True, True], - [True, True, True, False], - [True, True, True, False], - [True, True, True, False], - [True, True, True, False], - [True, True, True, False], - [True, True, True, False], - [True, True, True, False], - [True, True, True, False], - ] - ) - ) + np.testing.assert_array_equal( + is_acting[is_unique, :], + np.array( + [ + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, False], + [True, True, True, False], + [True, True, True, False], + [True, True, True, False], + [True, True, True, False], + [True, True, True, False], + [True, True, True, False], + [True, True, True, False], + ] + ), ) x_sampled, is_acting_sampled = ds.sample_valid_x(100, random_state=42) @@ -351,12 +422,9 @@ def test_design_space_hierarchical(self): assert len(seen_x) == 16 assert len(seen_is_acting) == 2 - def test_check_conditionally_acting(self): - class WrongDesignSpace(DesignSpace): - def _is_conditionally_acting(self) -> np.ndarray: - return np.zeros((self.n_dv,), dtype=bool) - - ds = WrongDesignSpace( + @unittest.skipIf(not HAS_CONFIG_SPACE, "Hierarchy dependencies not installed") + def test_design_space_hierarchical_config_space(self): + ds = DesignSpace( [ CategoricalVariable(["A", "B", "C"]), # x0 CategoricalVariable(["E", "F"]), # x1 @@ -368,8 +436,122 @@ def _is_conditionally_acting(self) -> np.ndarray: ds.declare_decreed_var( decreed_var=3, meta_var=0, meta_value="A" ) # Activate x3 if x0 == A + ds.add_value_constraint( + var1=0, value1="C", var2=1, value2="F" + ) # Prevent a == C and b == F + + x_cartesian = np.array( + list(itertools.product([0, 1, 2], [0, 1], [0, 1], [0.25, 0.75])) + ) + self.assertEqual(x_cartesian.shape, (24, 4)) + + self.assertTrue( + np.all(ds.is_conditionally_acting == [False, False, False, True]) + ) + + x, is_acting = ds.correct_get_acting(x_cartesian) + _, is_unique = np.unique(x, axis=0, return_index=True) + self.assertEqual(len(is_unique), 14) + np.testing.assert_array_equal( + x[is_unique, :], + np.array( + [ + [0, 0, 0, 0.25], + [0, 0, 0, 0.75], + [0, 0, 1, 0.25], + [0, 0, 1, 0.75], + [0, 1, 0, 0.25], + [0, 1, 0, 0.75], + [0, 1, 1, 0.25], + [0, 1, 1, 0.75], + [1, 0, 0, 0.5], + [1, 0, 1, 0.5], + [1, 1, 0, 0.5], + [1, 1, 1, 0.5], + [2, 0, 0, 0.5], + [2, 0, 1, 0.5], + ] + ), + ) + np.testing.assert_array_equal( + is_acting[is_unique, :], + np.array( + [ + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, True], + [True, True, True, False], + [True, True, True, False], + [True, True, True, False], + [True, True, True, False], + [True, True, True, False], + [True, True, True, False], + ] + ), + ) + + x_sampled, is_acting_sampled = ds.sample_valid_x(100, random_state=42) + assert x_sampled.shape == (100, 4) + x_sampled[is_acting_sampled[:, 3], 3] = np.round( + x_sampled[is_acting_sampled[:, 3], 3] + ) + + x_corr, is_acting_corr = ds.correct_get_acting(x_sampled) + self.assertTrue(np.all(x_corr == x_sampled)) + self.assertTrue(np.all(is_acting_corr == is_acting_sampled)) + + seen_x = set() + seen_is_acting = set() + for i, xi in enumerate(x_sampled): + seen_x.add(tuple(xi)) + seen_is_acting.add(tuple(is_acting_sampled[i, :])) + assert len(seen_x) == 14 + assert len(seen_is_acting) == 2 + + def test_check_conditionally_acting(self): + class WrongDesignSpace(DesignSpace): + def _is_conditionally_acting(self) -> np.ndarray: + return np.zeros((self.n_dv,), dtype=bool) + + for simulate_no_cs in [True, False]: + with simulate_no_config_space(simulate_no_cs): + ds = WrongDesignSpace( + [ + CategoricalVariable(["A", "B", "C"]), # x0 + CategoricalVariable(["E", "F"]), # x1 + IntegerVariable(0, 1), # x2 + FloatVariable(0, 1), # x3 + ], + seed=42, + ) + ds.declare_decreed_var( + decreed_var=3, meta_var=0, meta_value="A" + ) # Activate x3 if x0 == A + + self.assertRaises( + RuntimeError, lambda: ds.sample_valid_x(10, random_state=42) + ) + + @unittest.skipIf(not HAS_CONFIG_SPACE, "Hierarchy dependencies not installed") + def test_restrictive_value_constraint(self): + ds = DesignSpace( + [ + IntegerVariable(0, 2), + IntegerVariable(0, 2), + ] + ) + assert ds._cs.get_hyperparameters()[0].default_value == 1 + + ds.add_value_constraint(var1=0, value1=1, var2=0, value2=1) + ds.sample_valid_x(100, random_state=42) - self.assertRaises(RuntimeError, lambda: ds.sample_valid_x(10, random_state=42)) + x_cartesian = np.array(list(itertools.product([0, 1, 2], [0, 1, 2]))) + ds.correct_get_acting(x_cartesian) if __name__ == "__main__":