diff --git a/smt/surrogate_models/sgp.py b/smt/surrogate_models/sgp.py index 254abaa97..4619fe6d7 100644 --- a/smt/surrogate_models/sgp.py +++ b/smt/surrogate_models/sgp.py @@ -72,14 +72,15 @@ def compute_K(self, A: np.ndarray, B: np.ndarray, theta, sigma2): def set_inducing_inputs(self, Z=None, normalize=False): """ - Define number of inducing inputs or set the locations manually + Define number of inducing inputs or set the locations manually. + When Z is not specified then points are picked randomly amongst the inputs training set. Parameters ---------- nz : int, optional Number of inducing inputs. Z : np.ndarray [M,ndim], optional - Incuding inputs. + Inducing inputs. normalize : When Z is given, whether values should be normalized """ if Z is None: diff --git a/smt/surrogate_models/tests/test_sgp.py b/smt/surrogate_models/tests/test_sgp.py index e1d945162..67be55aef 100644 --- a/smt/surrogate_models/tests/test_sgp.py +++ b/smt/surrogate_models/tests/test_sgp.py @@ -3,6 +3,8 @@ import unittest from smt.surrogate_models import SGP +from smt.utils.sm_test_case import SMTestCase +from smt.utils import compute_rms_error def f_obj(x): @@ -13,54 +15,45 @@ def f_obj(x): ) -class TestSGP(unittest.TestCase): - def test_1d(self): - dir = "D:\\rlafage/workspace/sparse_GPy_SMT/" - rng = np.random.RandomState(0) +class TestSGP(SMTestCase): + def setUp(self): + rng = np.random.RandomState(1) # Generate training data N_train = 200 - eta = [0.01] - gaussian_noise = rng.normal(loc=0.0, scale=np.sqrt(eta), size=(N_train, 1)) - Xtrain = 2 * np.random.rand(N_train, 1) - 1 - # Xtrain = np.load(dir + "xtrain.npy") - Ytrain = f_obj(Xtrain) + gaussian_noise - # Ytrain = np.load(dir + "ytrain.npy") + self.eta = [0.01] + gaussian_noise = rng.normal(loc=0.0, scale=np.sqrt(self.eta), size=(N_train, 1)) + self.Xtrain = 2 * np.random.rand(N_train, 1) - 1 + self.Ytrain = f_obj(self.Xtrain) + gaussian_noise + # Generate test data (noise-free) N_test = 50 - Xtest = 2 * np.random.rand(N_test, 1) - 1 - # Xtest = np.load(dir + "xtest.npy") - Ytest = f_obj(Xtest).reshape(-1, 1) - - sgp = SGP(noise0=eta, theta_bounds=[1e-6, 100], n_inducing=30) - sgp.set_training_values(Xtrain, Ytrain) - # sgp.set_inducing_inputs(Z=np.load(dir + "inducing.npy")) + self.Xtest = 2 * rng.rand(N_test, 1) - 1 + self.Ytest = f_obj(self.Xtest).reshape(-1, 1) + + # Pick inducing points at random + N_inducing = 30 + self.Z = 2 * rng.rand(N_inducing, 1) - 1 + + def test_fitc(self): + # Assume we know the variance eta of our noisy input data + sgp = SGP(noise0=self.eta) + sgp.set_training_values(self.Xtrain, self.Ytrain) + sgp.set_inducing_inputs(Z=self.Z) sgp.train() - Ypred = sgp.predict_values(Xtest) - rmse = np.sqrt(np.mean((Ypred - Ytest) ** 2)) - print("\nRMSE : %f" % rmse) - - # plot prediction - x = np.linspace(-1, 1, 201).reshape(-1, 1) - y = f_obj(x) + Ypred = sgp.predict_values(self.Xtest) + self.assert_error(Ypred, self.Ytest, atol=0.02, rtol=0.1) - hat_y = sgp.predict_values(x) - var = sgp.predict_variances(x) - Z = sgp.Z - plt.figure(figsize=(14, 6)) - - plt.plot(x, y, "C1-", label="target function") - plt.scatter(Xtrain, Ytrain, marker="o", s=10, label="observed data") - plt.plot(x, hat_y, "k-", label="sparse GP") - plt.plot(x, hat_y - 3 * np.sqrt(var), "k--") - plt.plot(x, hat_y + 3 * np.sqrt(var), "k--", label="99% CI") - plt.plot(Z, -2.9 * np.ones_like(Z), "r|", mew=2, label="inducing points") - # plt.xlim([-1.1,1.1]) - plt.ylim([-3, 3]) - plt.legend(loc=0) - plt.show() + def test_vfe(self): + # Assume we know the variance eta of our noisy input data + sgp = SGP(noise0=self.eta, method="VFE") + sgp.set_training_values(self.Xtrain, self.Ytrain) + sgp.set_inducing_inputs(Z=self.Z) + sgp.train() + Ypred = sgp.predict_values(self.Xtest) + self.assert_error(Ypred, self.Ytest, atol=0.05, rtol=0.1) if __name__ == "__main__": unittest.main()