From 1e543dbc615e7795e8cc63312d2c278e4ceb4ea3 Mon Sep 17 00:00:00 2001 From: Antoine AVERLAND Date: Fri, 24 Nov 2023 14:21:49 +0100 Subject: [PATCH] Add docstrings --- smt/sampling_methods/pydoe.py | 79 ++++++++++++++++++++++------------- 1 file changed, 51 insertions(+), 28 deletions(-) diff --git a/smt/sampling_methods/pydoe.py b/smt/sampling_methods/pydoe.py index 8425e0254..98ca724ef 100644 --- a/smt/sampling_methods/pydoe.py +++ b/smt/sampling_methods/pydoe.py @@ -1,5 +1,9 @@ """ -box_behnken sampling; uses the pyDOE3 package. +Author: Antoine Averland and RĂ©mi Lafage + +This package is distributed under New BSD license. + +pyDOE3 sampling methods """ from pyDOE3 import doe_box_behnken from pyDOE3 import doe_gsd @@ -11,26 +15,40 @@ class PyDoeSamplingMethod(SamplingMethod): + """ + Base class for pyDOE3 designs + See https://pydoe3.readthedocs.io/ + """ + def __init__(self, **kwargs): super().__init__(**kwargs) self.nx = self.options["xlimits"].shape[0] self.levels = None def _compute(self, nt: int = None): + """ + Get the array of the sampling method, create an array of indices with it. + Those indicies will be useful to indicate which value of the linspace to put in the final array. + Then create an array of the values of the linspace. + Run throught the indices array and put in the array "res" the values of the array "values" at the index given by the array indices". + """ xlimits = self.options["xlimits"] levels = self.levels + # Retrieve indices from pyDOE3 design doe = self._compute_doe() - indices = np.array(doe, dtype=int) - print(indices) + indices = np.array(doe, dtype=int) # create the indices array + # Compute scaled values for each x components values = np.zeros((self.nx, max(levels))) for i in range(self.nx): values[i, 0 : levels[i]] = np.linspace( - xlimits[i, 0], xlimits[i, 1], num=levels[i] + xlimits[i, 0], + xlimits[i, 1], + num=levels[i], ) - print(values) + # Use indices to shape the result array and fill it with values res = np.zeros(doe.shape) i = 0 for idx in indices: @@ -41,25 +59,32 @@ def _compute(self, nt: int = None): return res def _compute_doe(): + """Returns a matrix (nsamples, nx) of indices. + Each indices takes a value in [0, nlevels_i-1] where nlevels_i is + the number of levels of the ith component of x. + This method has to be overriden by subclasses""" raise NotImplementedError( "You have to implement DOE generation method _compute_doe()" ) class BoxBehnken(PyDoeSamplingMethod): + """See https://pydoe3.readthedocs.io/en/latest/rsm.html#box-behnken""" + def __init__(self, **kwargs): super().__init__(**kwargs) - self.levels = [3] * self.nx # for box behnken the number of levels is fixed - def _compute_doe(self): - box_behnken_doe = ( - doe_box_behnken.bbdesign(self.nx) + 1 - ) # We have to increment the elements of doe_box_behnken to have the indices + # Box Behnken design has 3 levels [-1, 0, 1] + self.levels = [3] * self.nx # for - return box_behnken_doe + def _compute_doe(self): + # Increment Box Behnken levels to get indices [0, 1, 2] + return doe_box_behnken.bbdesign(self.nx) + 1 class Gsd(PyDoeSamplingMethod): + """See https://pydoe3.readthedocs.io/en/latest/rsm.html#gsd""" + def __init__(self, **kwargs): super().__init__(**kwargs) @@ -80,12 +105,13 @@ def _initialize(self, **kwargs): def _compute_doe(self): levels = self.options["levels"] reduction = self.options["reduction"] - gsd_doe = doe_gsd.gsd(levels, reduction) - return gsd_doe + return doe_gsd.gsd(levels, reduction) class Factorial(PyDoeSamplingMethod): + """See https://pydoe3.readthedocs.io/en/latest/factorial.html#general-full-factorial""" + def __init__(self, **kwargs): super().__init__(**kwargs) @@ -100,25 +126,22 @@ def _initialize(self, **kwargs): def _compute_doe(self): levels = self.options["levels"] - factorial_doe = doe_factorial.fullfact(levels) - - return factorial_doe + return doe_factorial.fullfact(levels) class PlackettBurman(PyDoeSamplingMethod): + """See https://pydoe3.readthedocs.io/en/latest/factorial.html#plackett-burman""" + def __init__(self, **kwargs): super().__init__(**kwargs) - self.levels = [2] * self.nx # for plackett burman the number of levels is fixed + + # Plackett Burman design has 2 levels [-1, 1] + self.levels = [2] * self.nx def _compute_doe(self): - plackett_burman_doe = doe_plackett_burman.pbdesign(self.nx) - ny = plackett_burman_doe.shape[1] - nb_rows = 4 * ( - int(self.nx / 4) + 1 - ) # calculate the correct number of rows (multiple of 4) - for i in range(nb_rows): - for j in range(ny): - if plackett_burman_doe[i, j] == -1: - plackett_burman_doe[i, j] = 0 - - return plackett_burman_doe + doe = doe_plackett_burman.pbdesign(self.nx) + + # Change -1 level to get indices [0, 1] + doe[doe < 0] = 0 + + return doe