-
Notifications
You must be signed in to change notification settings - Fork 16
/
decode_test.ml
192 lines (170 loc) · 7.09 KB
/
decode_test.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
(***********************************************************************)
(* decode_test.ml - Unit tests for number.ml *)
(* *)
(* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, *)
(* 2011, 2012, 2013 Yaron Minsky and Contributors *)
(* *)
(* This file is part of SKS. SKS is free software; you can *)
(* redistribute it and/or modify it under the terms of the GNU General *)
(* Public License as published by the Free Software Foundation; either *)
(* version 2 of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, but *)
(* WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *)
(* General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU General Public License *)
(* along with this program; if not, write to the Free Software *)
(* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *)
(* USA or see <http://www.gnu.org/licenses/>. *)
(***********************************************************************)
open StdLabels
open MoreLabels
open Printf
open Decode
open Common
open ZZp.Infix
module ZSet = ZZp.Set
let rand_int = Random.State.int RMisc.det_rng
let rand_bits () = Random.State.bits RMisc.det_rng
(*************************************************************************)
(** Simple counter table *)
let ctr_table = Hashtbl.create 0
let incr_count name =
try
let ctr_ref = Hashtbl.find ctr_table name in
incr ctr_ref
with
Not_found ->
Hashtbl.add ctr_table ~key:name ~data:(ref 1)
let read_count name =
try !(Hashtbl.find ctr_table name)
with Not_found -> 0
(*************************************************************************)
let test name cond =
printf ".%!";
incr_count name;
if not cond then raise
(Unit_test_failure (sprintf "Decode test <%s:%d> failed"
name (read_count name)))
(** creates a random monic polynomial of desired dimension *)
let rand_poly dim =
let poly = Array.init (dim + 1)
~f:(fun i ->
if i = dim then ZZp.one
else ZZp.rand rand_bits)
in
Poly.of_array poly
let interp_test () =
let deg = rand_int 10 + 1 in
let num_deg = rand_int deg in
let denom_deg = deg - num_deg in
let num = rand_poly num_deg in
let denom = rand_poly denom_deg in
test "poly construction"
(Poly.degree num == num_deg && Poly.degree denom = denom_deg );
let mbar = rand_int 9 + 1 in
let n = mbar + 1 in
let toobig = deg + 1 > mbar in
let values = ZZp.mut_array_to_array (ZZp.svalues n) in
let points = ZZp.points n in
for i = 0 to Array.length values - 1 do
values.(i) <- Poly.eval num points.(i) /: Poly.eval denom points.(i)
done;
try
let (found_num,found_denom) =
Decode.interpolate ~values ~points ~d:(num_deg - denom_deg)
in
(* printf "mbar: %d, num_deg: %d, denom_deg: %d\n" mbar num_deg denom_deg;
printf "num: %s\ndenom: %s\n%!" (Poly.to_string num) (Poly.to_string denom);
printf "gcd: %s\n" (Poly.to_string (Poly.gcd num denom));
printf "found num: %s\nfound denom: %s\n%!"
(Poly.to_string found_num) (Poly.to_string found_denom); *)
test "degree equality" (toobig
|| (Poly.degree found_num = Poly.degree num
&& Poly.degree found_denom = Poly.degree denom));
test "num equality" (toobig || Poly.eq found_num num);
test "denom equality" (toobig || Poly.eq found_denom denom);
with
Interpolation_failure ->
test (sprintf "interpolation failed (deg:%d,mbar:%d)" deg mbar)
(deg + 1 > mbar)
let set_init ~f n =
let rec loop n set =
if n = 0 then set
else loop (n - 1) (ZSet.add (f ()) set)
in
loop n ZSet.empty
let ( &> ) f g x = f (g x)
let ( &< ) g f x = f (g x)
let ( @@ ) f x = f x
(** Test full reconciliation, from beginning to end *)
let reconcile_test () =
let mbar = rand_int 20 + 1 in (* maximum recoverable # of points *)
let n = mbar + 1 in (* Number of sample values to capture *)
let points = ZZp.points n in (* Array of evaluation points *)
let svalues1 = ZZp.svalues n in (* sample values 1 *)
let svalues2 = ZZp.svalues n in (* sample values 2 *)
let m = rand_int (mbar * 2) + 1 in (* diff size to be reconciled *)
(* m1 and m2 are a partitioning of m *)
let m1 = rand_int m in
let m2 = m - m1 in
let set1 = set_init m1 ~f:(fun () -> ZZp.rand rand_bits) in
let set2 = set_init m2 ~f:(fun () -> ZZp.rand rand_bits) in
(* printf "mbar: %d, m: %d, m1: %d, m2: %d\n%!" mbar m m1 m2; *)
test "full sets" (ZSet.cardinal set1 = m1 && ZSet.cardinal set2 = m2);
test "empty intersection" (ZSet.is_empty @@ ZSet.inter set1 set2);
ZSet.iter ~f:(fun x -> ZZp.add_el ~svalues:svalues1 ~points x) set1;
ZSet.iter ~f:(fun x -> ZZp.add_el ~svalues:svalues2 ~points x) set2;
let values = ZZp.mut_array_div svalues1 svalues2 in
try
let (diff1,diff2) =
Decode.reconcile ~values ~points ~d:(m1 - m2)
in
test "size equality set1"
(ZSet.cardinal set1 = ZSet.cardinal diff1);
test "size equality set2"
(ZSet.cardinal set2 = ZSet.cardinal diff2);
test "recon compare" (ZSet.equal diff1 set1 && ZSet.equal diff2 set2)
with
Low_mbar -> test "low mbar" (m > mbar)
let factorization_test () =
let deg = rand_int 10 + 1 in
let terms = Array.to_list (Array.init deg (fun _ -> rand_poly 1)) in
let poly = List.fold_left ~init:Poly.one ~f:Poly.mult terms in
let roots = Decode.factor poly in
let orig_roots =
ZZp.zset_of_list (List.map ~f:(fun p -> ZZp.neg (Poly.to_array p).(0)) terms)
in
test "factor equality" (ZSet.equal orig_roots roots)
let interp_run () =
let deg = rand_int 10 + 1 in
let num_deg = rand_int deg in
let denom_deg = deg - num_deg in
let num = rand_poly num_deg in
let denom = rand_poly denom_deg in
if not (Poly.degree num == num_deg && Poly.degree denom = denom_deg )
then `poly_gen_falure (deg,num_deg,denom_deg,num,denom)
else
let mbar = rand_int 9 + 1 in
let n = mbar + 1 in
let values = ZZp.mut_array_to_array (ZZp.svalues n) in
let points = ZZp.points n in
for i = 0 to Array.length values - 1 do
values.(i) <- Poly.eval num points.(i) /: Poly.eval denom points.(i)
done;
try
let (found_num,found_denom) =
Decode.interpolate ~values ~points ~d:(num_deg - denom_deg)
in
`succ ((num,denom),(found_num,found_denom),mbar)
with
Interpolation_failure ->
`fail ((num,denom),mbar)
let run () =
begin
for i = 1 to 100 do factorization_test () done;
for i = 1 to 100 do interp_test () done;
for i = 1 to 100 do reconcile_test () done;
end