-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_processor.py
262 lines (215 loc) · 10.2 KB
/
image_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import tensorflow as tf
import numpy as np
import scipy
import os
import utils
import pickle
import h5py
import time
import data_loader
import utils
def VGG_16_extract_pool5(split, args, file_code):
# If the feature is already recorded
if os.path.exists(os.path.join(args.data_dir, split, '%s_vgg16_pool5_%d.h5' % (split, file_code))):
print 'Image Feature Data Already Exists. Start Loading Feature Data from Layer pool5'
return data_loader.load_VGG_feature_pool5(args.data_dir, split, file_code)
print 'Image Feature Extraction Starts...'
qa_data, vocab_data = data_loader.load_qa_data(args.data_dir, args.top_num)
if split == 'train':
qa_data = qa_data['train']
else:
qa_data = qa_data['val']
img_id_dict = {}
for qa in qa_data:
img_id_dict[qa['image_id']] = 1
img_id_list = [img_id for img_id in img_id_dict]
num_img = len(img_id_list)
print 'Total Image ID: ', num_img
file_size = num_img // 2
file_code = 0
with tf.Session() as sess:
print 'Processing Image Dataset of ', split
img_batch = tf.placeholder("float", [None, 224, 224, 3])
feature = np.ndarray((file_size, 7, 7, 512))
idx = 0
vgg = Vgg16()
vgg.build(img_batch)
filled_size = 0
id_list = []
while idx < num_img:
start = time.clock()
batch = np.ndarray((args.batch_size, 224, 224, 3))
img_counter = 0
for i in range(args.batch_size):
if idx >= num_img or filled_size >= file_size:
break
img_file_path = os.path.join(args.data_dir,'%s' % split,
'COCO_%s2014_%.12d.jpg' % (split, img_id_list[idx]))
if os.path.exists(img_file_path):
batch[i, :, :, :] = utils.load_image(img_file_path)
id_list.append(img_id_list[idx])
img_counter += 1
filled_size += 1
idx += 1
feed_dict = {img_batch : batch[0:img_counter, :, :, :]}
# Feed in Images and Run through the Model
feature_batch = sess.run(vgg.pool5, feed_dict=feed_dict)
feature[(filled_size - img_counter):filled_size, :, :, :] = feature_batch[0:img_counter, :, : ,:]
end = time.clock()
print 'Time Spent: ', end - start
print 'Image Processed: ', idx
if filled_size >= file_size or idx >= num_img:
print 'Saving VGG-16 Layer Features'
hf5_feat = h5py.File(os.path.join(args.data_dir, split, '%s_vgg16_pool5_%d.h5' % \
(split, file_code)), 'w')
hf5_feat.create_dataset('pool5_feature', data=feature)
hf5_feat.close()
print 'Saving Image ID List'
hf5_img_id = h5py.File(os.path.join(args.data_dir, split, '%s_img_id_pool5_%d.h5' % \
(split, file_code)), 'w')
hf5_img_id.create_dataset('img_id', data=id_list)
hf5_img_id.close()
print 'Finishing Saving Data Bucket %d' % file_code
file_code += 1
filled_size = 0
id_list = []
feature = np.ndarray((file_size, 7, 7, 512))
print 'Image Information Encoding Done'
return data_loader.load_VGG_feature_pool5(args.data_dir, split, 0)
def VGG_16_extract_fc7(split, args):
# If the feature is already recorded
if os.path.exists(os.path.join(args.data_dir, split, split + '_vgg16_fc7.h5')):
print 'Image Feature Data Already Exists. Start Loading Feature Data from Layer fc7'
return data_loader.load_VGG_feature_fc7(args.data_dir, split)
print 'Image Feature Extraction Starts...'
qa_data, vocab_data = data_loader.load_qa_data(args.data_dir, args.top_num)
if split == 'train':
qa_data = qa_data['train']
else:
qa_data = qa_data['val']
img_id_dict = {}
for qa in qa_data:
img_id_dict[qa['image_id']] = 1
img_id_list = [img_id for img_id in img_id_dict]
num_img = len(img_id_list)
print 'Total Image ID: ', num_img
with tf.Session() as sess:
print 'Processing Image Dataset of ', split
img_batch = tf.placeholder("float", [None, 224, 224, 3])
feature = np.ndarray((num_img, 4096))
idx = 0
vgg = Vgg16()
vgg.build(img_batch)
while idx < num_img:
start = time.clock()
batch = np.ndarray((args.batch_size, 224, 224, 3))
img_counter = 0
for i in range(args.batch_size):
if idx >= num_img:
break
img_file_path = os.path.join(args.data_dir,'%s' % split,
'COCO_%s2014_%.12d.jpg' % (split, img_id_list[idx]))
if os.path.exists(img_file_path):
batch[i, :, :, :] = utils.load_image(img_file_path)
img_counter += 1
idx += 1
feed_dict = {img_batch : batch[0:img_counter, :, :, :]}
# Feed in Images and Run through the Model
feature_batch = sess.run(vgg.fc7, feed_dict=feed_dict)
feature[(idx - img_counter):idx, :] = feature_batch[0:img_counter, :]
end = time.clock()
print 'Time Spent: ', end - start
print 'Image Processed: ', idx
print 'Saving VGG-16 Layer Features into ' + os.path.join(args.data_dir, split, split + '_vgg16_fc7.h5')
hf5_feat = h5py.File(os.path.join(args.data_dir, split, split + '_vgg16_fc7.h5'), 'w')
hf5_feat.create_dataset('fc7_feature', data=feature)
hf5_feat.close()
print 'Saving Image ID List into ' + os.path.join(args.data_dir, split, split + '_img_id_fc7.h5')
hf5_img_id = h5py.File(os.path.join(args.data_dir, split, split + '_img_id_fc7.h5'), 'w')
hf5_img_id.create_dataset('img_id', data=img_id_list)
hf5_img_id.close()
print 'Image Information Encoding Done'
return data_loader.load_VGG_feature_fc7(args.data_dir, split)
# VGG-16 Model Quoted From https://github.com/machrisaa/tensorflow-vgg
VGG_MEAN = [103.939, 116.779, 123.68]
class Vgg16:
def __init__(self, vgg16_npy_path='data/vgg16.npy'):
self.data_dict = np.load(vgg16_npy_path, encoding='latin1').item()
print("Parameter Npy File Loaded")
def build(self, rgb):
"""
load variable from npy to build the VGG
:param rgb: rgb image [batch, height, width, 3] values scaled [0, 1]
"""
start_time = time.time()
print("Build VGG-16 Model Started")
rgb_scaled = rgb * 255.0
# Convert RGB to BGR
red, green, blue = tf.split(3, 3, rgb_scaled)
assert red.get_shape().as_list()[1:] == [224, 224, 1]
assert green.get_shape().as_list()[1:] == [224, 224, 1]
assert blue.get_shape().as_list()[1:] == [224, 224, 1]
bgr = tf.concat(3, [
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2],
])
assert bgr.get_shape().as_list()[1:] == [224, 224, 3]
self.conv1_1 = self.conv_layer(bgr, "conv1_1")
self.conv1_2 = self.conv_layer(self.conv1_1, "conv1_2")
self.pool1 = self.max_pool(self.conv1_2, 'pool1')
self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")
self.conv2_2 = self.conv_layer(self.conv2_1, "conv2_2")
self.pool2 = self.max_pool(self.conv2_2, 'pool2')
self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")
self.conv3_2 = self.conv_layer(self.conv3_1, "conv3_2")
self.conv3_3 = self.conv_layer(self.conv3_2, "conv3_3")
self.pool3 = self.max_pool(self.conv3_3, 'pool3')
self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")
self.conv4_2 = self.conv_layer(self.conv4_1, "conv4_2")
self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3")
self.pool4 = self.max_pool(self.conv4_3, 'pool4')
self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")
self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2")
self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3")
self.pool5 = self.max_pool(self.conv5_3, 'pool5')
self.fc6 = self.fc_layer(self.pool5, "fc6")
assert self.fc6.get_shape().as_list()[1:] == [4096]
self.relu6 = tf.nn.relu(self.fc6)
self.fc7 = self.fc_layer(self.relu6, "fc7")
self.relu7 = tf.nn.relu(self.fc7)
self.fc8 = self.fc_layer(self.relu7, "fc8")
self.prob = tf.nn.softmax(self.fc8, name="prob")
self.data_dict = None
print("Build Model Finished In: %ds" % (time.time() - start_time))
def avg_pool(self, bottom, name):
return tf.nn.avg_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def max_pool(self, bottom, name):
return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def conv_layer(self, bottom, name):
with tf.variable_scope(name):
filt = self.get_conv_filter(name)
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias(name)
bias = tf.nn.bias_add(conv, conv_biases)
relu = tf.nn.relu(bias)
return relu
def fc_layer(self, bottom, name):
with tf.variable_scope(name):
shape = bottom.get_shape().as_list()
dim = 1
for d in shape[1:]:
dim *= d
x = tf.reshape(bottom, [-1, dim])
weights = self.get_fc_weight(name)
biases = self.get_bias(name)
# Fully connected layer. Note that the '+' operation automatically
# broadcasts the biases.
fc = tf.nn.bias_add(tf.matmul(x, weights), biases)
return fc
def get_conv_filter(self, name):
return tf.constant(self.data_dict[name][0], name="filter")
def get_bias(self, name):
return tf.constant(self.data_dict[name][1], name="biases")
def get_fc_weight(self, name):
return tf.constant(self.data_dict[name][0], name="weights")