-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
627 lines (502 loc) · 36.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import os
import argparse
import yaml
import numpy as np
import pandas as pd
import glob
def annualization_rate(i, years):
return (i*(1+i)**years)/((1+i)**years-1)
def get_args():
# Store all parameters for easy retrieval
parser = argparse.ArgumentParser(
description = 'nys-cem')
parser.add_argument('--params_filename',
type=str,
default='params.yaml',
help = 'Loads model parameters')
args = parser.parse_args()
config = yaml.load(open(args.params_filename), Loader=yaml.FullLoader)
for k,v in config.items():
args.__dict__[k] = v
return args
def load_timeseries(args):
T = args.num_years*8760 + ((args.num_years+2)//4)*24 ## Account for leap years starting in 2008
# Load all potential generation and actual hydro generation time-series
onshore_pot_hourly = np.array(pd.read_csv(os.path.join(args.data_dir, 'onshore_power_hourly_norm.csv'),
index_col=0))[0:T]
offshore_pot_hourly = np.array(pd.read_csv(os.path.join(args.data_dir, 'offshore_power_hourly_norm.csv'),
index_col=0))[0:T]
solar_pot_hourly = np.array(pd.read_csv(os.path.join(args.data_dir, 'solar_power_hourly_norm.csv'),
index_col=0))[0:T]
flex_hydro_daily_mwh = np.array(pd.read_csv(os.path.join(args.data_dir, 'flex_hydro_daily_mwh.csv'),
index_col=0))[0:T]
fixed_hydro_hourly_mw = np.array(pd.read_csv(os.path.join(args.data_dir, 'fixed_hydro_hourly_mw.csv'),
index_col=0))[0:T]
# Load baseline and full heating demand time series
baseline_demand_hourly_mw = np.array(pd.read_csv(os.path.join(args.data_dir, 'baseline_demand_hourly_mw.csv'),
index_col=0))[0:T]
heating_hourly = np.array(pd.read_csv(os.path.join(args.data_dir, 'elec_heating_hourly_mw.csv'),
index_col=0))[0:T]
# print(np.mean(offshore_pot_hourly, axis=0))
# print(np.mean(onshore_pot_hourly, axis=0))
# print(np.mean(solar_pot_hourly, axis = 0))
return baseline_demand_hourly_mw, heating_hourly, onshore_pot_hourly, offshore_pot_hourly, \
solar_pot_hourly, fixed_hydro_hourly_mw, flex_hydro_daily_mwh
def get_raw_columns():
# Define columns for raw results export
columns = ['lct', 'nuclear_binary', 'h2_binary', 'hq-ch_cap',
'add_heating_load', 'add_ev_load', 'total_onshore', 'total_offshore', 'total_solar',
'total_new_gt_cap','total_battery_cap', 'total_battery_power', 'total_h2_cap', 'total_h2_power',
'total_new_trans','total_hq_import', 'onshore_1', 'onshore_2', 'offshore_3', 'offshore_4',
'solar_1', 'solar_2', 'solar_3', 'solar_4', 'new_gt_cap_1', 'new_gt_cap_2', 'new_gt_cap_3',
'new_gt_cap_4', 'battery_cap_1', 'battery_cap_2', 'battery_cap_3', 'battery_cap_4', 'battery_power_1',
'battery_power_2', 'battery_power_3', 'battery_power_4', 'battery_discharge_1', 'battery_discharge_2',
'battery_discharge_3','battery_discharge_4', 'h2_cap_1', 'h2_cap_2', 'h2_cap_3', 'h2_cap_4',
'h2_power_1', 'h2_power_2','h2_power_3', 'h2_power_4', 'h2_discharge_1', 'h2_discharge_2',
'h2_discharge_3', 'h2_discharge_4', 'hq_import_1', 'hq_import_2', 'hq_import_3', 'hq_import_4',
'total_trans_12', 'total_trans_23', 'total_trans_34', 'total_trans_21', 'total_trans_32',
'total_trans_43', 'ghg_reduction']
ts_columns = ['uncurtail_wind_gen_1', 'uncurtail_wind_gen_2', 'uncurtail_wind_gen_3', 'uncurtail_wind_gen_4',
'uncurtail_solar_gen_1', 'uncurtail_solar_gen_2', 'uncurtail_solar_gen_3', 'uncurtail_solar_gen_4',
'base_demand_1', 'base_demand_2', 'base_demand_3', 'base_demand_4',
'heating_demand_1', 'heating_demand_2', 'heating_demand_3', 'heating_demand_4',
'ev_charging_1', 'ev_charging_2', 'ev_charging_3', 'ev_charging_4',
'existing_gt_gen_1', 'existing_gt_gen_2', 'existing_gt_gen_3', 'existing_gt_gen_4',
'new_gt_gen_1', 'new_gt_gen_2', 'new_gt_gen_3', 'new_gt_gen_4',
'battery_level_1', 'battery_level_2', 'battery_level_3', 'battery_level_4',
'h2_level_1','h2_level_2','h2_level_3','h2_level_4',
'hq_import_1', 'hq_import_2', 'hq_import_3', 'hq_import_4',
'flex_hydro_1','flex_hydro_2','flex_hydro_3','flex_hydro_4',
'trans_12', 'trans_23', 'trans_34', '', 'trans_21', 'trans_32', 'trans_43', '',
'curtailed_gen_1', 'curtailed_gen_2', 'curtailed_gen_3', 'curtailed_gen_4']
return columns, ts_columns
def get_processed_columns():
# Define columns for processed results export
columns = ['RGT/LCT', 'RGT Binary', 'Nuclear Binary', 'H2 Binary', 'HQ-CH Addl. Cap.', 'Heating Load [MW]',
'EV Load [MW]',
'EV Fixed Charging', 'Charging Hours', 'Onshore [MW]', 'Offshore [MW]', 'Solar [MW]', 'New GT [MW]',
'Battery Energy [MWh]', 'Battery Power [MW]', 'H2 Energy [MWh]', 'H2 Power [MW]', 'New Trans. [MW]',
'New Trans. [GW-Mi]', 'Avg. Existing HQ Imports [MW]', 'Avg. New HQ Imports [MW]', 'Peak Demand [MW]',
'Uncurtailed Avg. Wind and Solar Gen. [MW]', 'Uncurtailed Renewable Gen. [MW]',
'Wind and Solar Curtailment', 'Avg. Battery Discharge [MW]', 'Avg. H2 Discharge [MW]',
'Exist. GT Cap', 'Avg. Exist. GT CF [MW]', 'Avg. New GT CF',
'Wind Gen. Cost [$/MWh]', 'Solar Gen. Cost [$/MWh]', 'Battery Cost [$/MWh]', 'New GT Cost [$/MWh]',
'New Trans. Cost [$/MWh]',
'Gas Fuel Cost [$/MWh]', 'Gas Ramping Cost [$/MWh]', 'Exist. Trans. + Cap. Cost [$/MWh]',
'Exist. Hydro Gen Cost [$/MWh]', 'Import Cost [$/MWh]', 'Nuc. Gen. Cost [$/MWh]', 'Total LCOE [$/MWh]',
'GHG Reduction']
return columns
def get_tx_tuples(args):
cap_ann = annualization_rate(args.i_rate, args.annualize_years_cap)
tx_matrix_limits = pd.read_excel(os.path.join(args.data_dir, 'transmission_matrix_limits.xlsx'),
header=0, index_col=0)
tx_matrix_cap_costs = pd.read_excel(os.path.join(args.data_dir, 'transmission_matrix_capacity_costs.xlsx'),
header=0, index_col=0)
tx_matrix_om_costs = pd.read_excel(os.path.join(args.data_dir, 'transmission_matrix_o&m_costs.xlsx'),
header=0, index_col=0)
tx_tuple_list = []
for i in range(len(tx_matrix_limits)):
for j in range(len(tx_matrix_limits.columns)):
if tx_matrix_limits.iloc[i, j] > 0:
tx_tuple_list.append(((i + 1, j + 1), tx_matrix_limits.iloc[i, j],
args.num_years * cap_ann * tx_matrix_cap_costs.iloc[i, j] +
tx_matrix_om_costs.iloc[i, j]))
return tx_tuple_list
def load_gt_ramping_costs(args, results, results_ts):
ramping_cost_mwh = args.gt_startup_cost_mw/2
net_load_ramping_total_cost = np.zeros(results.shape[0])
net_load_fuel_cost = np.zeros(results.shape[0])
net_load_om_cost = np.zeros(results.shape[0])
for i in range(results.shape[0]):
existing_gt_gen = results_ts[i, :, args.num_regions * 5: args.num_regions * 6]
new_gt_gen = results_ts[i, :, args.num_regions * 6: args.num_regions * 7]
net_load = existing_gt_gen + new_gt_gen
for l in range(net_load.shape[0] - 1):
for m in range(4):
net_load_ramping_total_cost[i] += abs(net_load[l + 1, m] - net_load[l, m]) * ramping_cost_mwh
net_load_fuel_cost[i] += args.natgas_cost_mmbtu[m] * args.mmbtu_per_mwh * \
(existing_gt_gen[l, m]/args.existing_gt_eff +
new_gt_gen[l, m] / args.new_gt_eff)
net_load_om_cost[i] += new_gt_gen[l, m] * args.new_gt_var_om_cost_mwh
net_load_total_cost = net_load_fuel_cost + net_load_om_cost
return net_load_total_cost, net_load_ramping_total_cost
def calculate_ghg_contributions():
# All emissions are given in therms of MMtCO2e
baseline_1990_emissions = 206.15
existing_industrial_emissions = 10.8
non_diesel_non_gas_transport_emissions = 13.51
nat_gas_emissions_rate = 53.1148 # kg CO2e/MMBTU
total_heating_emissions = 56.5 # MMtCO2e
total_transport_emissions = 61.17 # MMtCO2e
return nat_gas_emissions_rate, total_heating_emissions, total_transport_emissions, \
baseline_1990_emissions, existing_industrial_emissions, non_diesel_non_gas_transport_emissions
def raw_results_retrieval(args, model_config, m, tx_tuple_list):
T = args.num_years * 8760 + ((args.num_years + 2) // 4) * 24 ## Account for leap years starting in 2008
# Model run parameters
nuclear_boolean = args.nuclear_boolean
h2_boolean = args.h2_boolean
baseline_demand_hourly_mw, heating_demand, onshore_pot_hourly, offshore_pot_hourly, \
solar_pot_hourly, fixed_hydro_hourly_mw, flex_hydro_daily_mwh = load_timeseries(args)
heating_elec_ratio = m.getVarByName('total_heating_ratio').X
ev_elec_ratio = m.getVarByName('total_ev_ratio').X
total_heating_cap = heating_elec_ratio * np.sum(np.mean(heating_demand[0:T], axis = 0))
total_ev_cap = ev_elec_ratio * args.ev_max_cap
gen_batt_capacity_results = np.zeros((8, args.num_regions))
for i in range(args.num_regions):
gen_batt_capacity_results[0,i] = m.getVarByName('onshore_cap_region_{}'.format(i + 1)).X
gen_batt_capacity_results[1,i] = m.getVarByName('offshore_cap_region_{}'.format(i + 1)).X
gen_batt_capacity_results[2,i] = m.getVarByName('solar_cap_region_{}'.format(i + 1)).X
gen_batt_capacity_results[3,i] = m.getVarByName('new_gt_cap_region_{}'.format(i + 1)).X
gen_batt_capacity_results[4,i] = m.getVarByName('batt_energy_cap_region_{}'.format(i + 1)).X
gen_batt_capacity_results[5,i] = m.getVarByName('batt_power_cap_region_{}'.format(i + 1)).X
gen_batt_capacity_results[6,i] = m.getVarByName('h2_energy_cap_region_{}'.format(i + 1)).X
gen_batt_capacity_results[7,i] = m.getVarByName('h2_power_cap_region_{}'.format(i + 1)).X
timeseries_results = np.zeros((15, T, args.num_regions))
for i in range(args.num_regions):
for j in range(T):
# timeseries_results[0, j, i] = m.getVarByName('onshore_wind_util_region_{}[{}]'.format(i + 1, j)).X
# timeseries_results[1, j, i] = m.getVarByName('offshore_wind_util_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[2, j, i] = -m.getConstrByName('energy_balance_constraint_region_{}[{}]'
.format(i + 1, j)).Slack
timeseries_results[3, j, i] = m.getVarByName('flex_hydro_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[4, j, i] = m.getVarByName('batt_charge_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[5, j, i] = m.getVarByName('batt_discharge_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[6, j, i] = m.getVarByName('h2_charge_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[7, j, i] = m.getVarByName('h2_discharge_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[8, j, i] = m.getVarByName('batt_level_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[9, j, i] = m.getVarByName('h2_level_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[10, j, i] = m.getVarByName('hq_import_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[11, j, i] = m.getVarByName('existing_gt_gen_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[12, j, i] = m.getVarByName('new_gt_gen_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[13, j, i] = m.getVarByName('existing_gt_abs_region_{}[{}]'.format(i + 1, j)).X + \
m.getVarByName('new_gt_abs_region_{}[{}]'.format(i + 1, j)).X
timeseries_results[14, j, i] = m.getVarByName('ev_charging_region_{}[{}]'.format(i + 1, j)).X
# Transmission result processing
tx_cap_base_string = 'new_export_limits_{}_{}'
tx_ts_base_string = 'net_exports_ts_{}_to_{}[{}]'
tx_new_cap_results = np.zeros((len(tx_tuple_list)))
tx_total_cap_results = np.zeros((len(tx_tuple_list)))
tx_ts_results_WE = np.zeros((T, int(len(tx_tuple_list)/2)))
tx_ts_results_EW = np.zeros((T, int(len(tx_tuple_list)/2)))
export_WE_ts_count = 0
export_EW_ts_count = 0
for i, txt in enumerate(tx_tuple_list):
tx_new_cap_results[i] = m.getVarByName(tx_cap_base_string.format(txt[0][0], txt[0][1])).X
tx_total_cap_results[i] = m.getVarByName(tx_cap_base_string.format(txt[0][0], txt[0][1])).X + txt[1]
if txt[0][1] > txt[0][0]:
for j in range(T):
tx_ts_results_WE[j, export_WE_ts_count] = m.getVarByName(tx_ts_base_string.format(txt[0][0], txt[0][1], j)).X
export_WE_ts_count += 1
elif txt[0][0] > txt[0][1] :
for j in range(T):
tx_ts_results_EW[j, export_EW_ts_count] = m.getVarByName(tx_ts_base_string.format(txt[0][0], txt[0][1], j)).X
export_EW_ts_count += 1
## Export raw results
results = np.zeros(63)
results_ts = np.zeros((T, args.num_regions * 14))
# Time series results
results_ts[:, 0:2] = onshore_pot_hourly[0:T, 0:2] * gen_batt_capacity_results[0, 0:2] # Uncurtailed onshore gen
results_ts[:, 2:4] = offshore_pot_hourly[0:T, 2:4] * gen_batt_capacity_results[1, 2:4] # Uncurtailed offshore gen
results_ts[:, args.num_regions * 1: args.num_regions * 2] = \
solar_pot_hourly[0:T] * gen_batt_capacity_results[2, :] # Uncurtailed solar gen
results_ts[:, args.num_regions * 2: args.num_regions * 3] = baseline_demand_hourly_mw[0:T] # baseline demand
results_ts[:, args.num_regions * 3: args.num_regions * 4] = heating_elec_ratio * heating_demand[0:T] # heating
results_ts[:, args.num_regions * 4: args.num_regions * 5] = timeseries_results[14] # ev charging
results_ts[:, args.num_regions * 5: args.num_regions * 6] = timeseries_results[11] # existing GT generation
results_ts[:, args.num_regions * 6: args.num_regions * 7] = timeseries_results[12] # new GT generation
results_ts[:, args.num_regions * 7: args.num_regions * 8] = timeseries_results[8] # battery level
results_ts[:, args.num_regions * 8: args.num_regions * 9] = timeseries_results[9] # h2 level
results_ts[:, args.num_regions * 9: args.num_regions * 10] = timeseries_results[10] # hq import
results_ts[:, args.num_regions * 10: args.num_regions * 11] = timeseries_results[3] # flex hydro
results_ts[:, args.num_regions * 11: args.num_regions * 11 + 3] = tx_ts_results_WE # WE transmission flow
results_ts[:, args.num_regions * 12: args.num_regions * 12 + 3] = tx_ts_results_EW # EW transmission flow
results_ts[:, args.num_regions * 13: args.num_regions * 14] = timeseries_results[2] # Uncurtailed energy
# Determine LCT
if model_config == 0 or model_config == 1:
lct = m.getVarByName('lowc_target').X
else:
lct = np.round(1 - (np.sum(timeseries_results[11]) / (np.sum(baseline_demand_hourly_mw[0:T]) +
(total_heating_cap + total_ev_cap) * T
- np.sum(timeseries_results[10]))), 4)
results[0] = lct
results[1] = int(nuclear_boolean)
results[2] = int(h2_boolean)
results[3] = int(args.hq_limit_mw[2])
# Additional load parameters
results[4] = total_heating_cap
results[5] = total_ev_cap
# Total new capacities + avg. hydro import
results[6] = np.around(np.sum(gen_batt_capacity_results[0,:])) # total_onshore
results[7] = np.around(np.sum(gen_batt_capacity_results[1,:])) # total_offshore
results[8] = np.around(np.sum(gen_batt_capacity_results[2,:])) # total_solar
results[9] = np.around(np.sum(gen_batt_capacity_results[3,:] * args.reserve_req)) # total_new_gt_cap
results[10] = np.around(np.sum(gen_batt_capacity_results[4,:])) # total_battery_cap
results[11] = np.around(np.sum(gen_batt_capacity_results[5,:])) # total_battery_power
results[12] = np.around(np.sum(gen_batt_capacity_results[6,:])) # total_h2_cap
results[13] = np.around(np.sum(gen_batt_capacity_results[7,:])) # total_h2_power
results[14] = np.around(np.sum(tx_new_cap_results)) # total_new_trans
results[15] = np.around(np.mean(timeseries_results[10, :, 0]) + np.mean(timeseries_results[10, :, 1]) +
np.mean(timeseries_results[10, :, 2]) + np.mean(timeseries_results[10, :, 3]))
# total_hq_import
# Wind
results[16] = np.around(gen_batt_capacity_results[0, 0]) # onshore_1
results[17] = np.around(gen_batt_capacity_results[0, 1]) # onshore_2
results[18] = np.around(gen_batt_capacity_results[1, 2]) # offshore_3
results[19] = np.around(gen_batt_capacity_results[1, 3]) # offshore_4
# Solar
results[20] = np.around(gen_batt_capacity_results[2, 0]) # solar_1
results[21] = np.around(gen_batt_capacity_results[2, 1]) # solar_2
results[22] = np.around(gen_batt_capacity_results[2, 2]) # solar_3
results[23] = np.around(gen_batt_capacity_results[2, 3]) # solar_4
# GT
results[24] = np.around(gen_batt_capacity_results[3, 0] * args.reserve_req) # new_gt_cap_1
results[25] = np.around(gen_batt_capacity_results[3, 1] * args.reserve_req) # new_gt_cap_2
results[26] = np.around(gen_batt_capacity_results[3, 2] * args.reserve_req) # new_gt_cap_3
results[27] = np.around(gen_batt_capacity_results[3, 3] * args.reserve_req) # new_gt_cap_4
# Battery energy, power, average discharge
results[28] = np.around(gen_batt_capacity_results[4, 0]) # battery_cap_1
results[29] = np.around(gen_batt_capacity_results[4, 1]) # battery_cap_2
results[30] = np.around(gen_batt_capacity_results[4, 2]) # battery_cap_3
results[31] = np.around(gen_batt_capacity_results[4, 3]) # battery_cap_4
results[32] = np.around(gen_batt_capacity_results[5, 0]) # battery_power_1
results[33] = np.around(gen_batt_capacity_results[5, 1]) # battery_power_2
results[34] = np.around(gen_batt_capacity_results[5, 2]) # battery_power_3
results[35] = np.around(gen_batt_capacity_results[5, 3]) # battery_power_4
results[36] = np.around(np.mean(timeseries_results[5, :, 0])) # battery_discharge_1
results[37] = np.around(np.mean(timeseries_results[5, :, 1])) # battery_discharge_2
results[38] = np.around(np.mean(timeseries_results[5, :, 2])) # battery_discharge_3
results[39] = np.around(np.mean(timeseries_results[5, :, 3])) # battery_discharge_4
# H2 energy, power, average discharge
results[40] = np.around(gen_batt_capacity_results[6, 0]) # h2_cap_1
results[41] = np.around(gen_batt_capacity_results[6, 1]) # h2_cap_2
results[42] = np.around(gen_batt_capacity_results[6, 2]) # h2_cap_3
results[43] = np.around(gen_batt_capacity_results[6, 3]) # h2_cap_4
results[44] = np.around(gen_batt_capacity_results[7, 0]) # h2_power_1
results[45] = np.around(gen_batt_capacity_results[7, 1]) # h2_power_2
results[46] = np.around(gen_batt_capacity_results[7, 2]) # h2_power_3
results[47] = np.around(gen_batt_capacity_results[7, 3]) # h2_power_4
results[48] = np.around(np.mean(timeseries_results[7, :, 0])) # h2_discharge_1
results[49] = np.around(np.mean(timeseries_results[7, :, 1])) # h2_discharge_2
results[50] = np.around(np.mean(timeseries_results[7, :, 2])) # h2_discharge_3
results[51] = np.around(np.mean(timeseries_results[7, :, 3])) # h2_discharge_4
# Avg. Imports from HQ
results[52] = np.around(np.mean(timeseries_results[10, :, 0])) # hq_import_1
results[53] = np.around(np.mean(timeseries_results[10, :, 1])) # hq_import_2
results[54] = np.around(np.mean(timeseries_results[10, :, 2])) # hq_import_3
results[55] = np.around(np.mean(timeseries_results[10, :, 3])) # hq_import_4
# Total transmission capacity: WE results presented first, EW results follow
results[56] = np.around(tx_total_cap_results[0]) # new_trans_12
results[57] = np.around(tx_total_cap_results[2]) # new_trans_23
results[58] = np.around(tx_total_cap_results[4]) # new_trans_34
results[59] = np.around(tx_total_cap_results[1]) # new_trans_21
results[60] = np.around(tx_total_cap_results[3]) # new_trans_32
results[61] = np.around(tx_total_cap_results[5]) # new_trans_43
results[62] = m.getVarByName('ghg_emission_reduction').X
return results, results_ts
def full_results_processing(args, results, results_ts):
# Retrieve necessary model parameters
export_columns = get_processed_columns()
T = args.num_years * 8760 + ((args.num_years + 2) // 4) * 24 ## Account for leap years starting in 2008
tx_tuple_list = get_tx_tuples(args)
cap_ann = annualization_rate(args.i_rate, args.annualize_years_cap)
cap_battery = annualization_rate(args.i_rate, args.annualize_years_storage)
# Retrieve LCT values from results file
lct = results[:, 0]
# Potential generation time-series for curtailment calcs
baseline_demand_hourly_mw, heating_hourly, onshore_pot_hourly, offshore_pot_hourly, \
solar_pot_hourly, fixed_hydro_hourly_mw, flex_hydro_daily_mwh = load_timeseries(args)
# Create arrays to store costs -- All costs are annual
total_new_wind_cost = np.zeros(results.shape[0])
total_new_solar_cost = np.zeros(results.shape[0])
total_new_battery_cost = np.zeros(results.shape[0])
total_new_gt_cost = np.zeros(results.shape[0])
total_new_tx_cost = np.zeros(results.shape[0])
total_gas_cost = np.zeros(results.shape[0])
total_ramping_cost = np.zeros(results.shape[0])
total_annual_import_cost = np.zeros(results.shape[0])
total_cost_per_mwh = np.zeros(results.shape[0])
gen_uncurtailed_windsolar_energy = np.zeros(results.shape[0])
total_renewable_gen = np.zeros(results.shape[0])
peak_demand = np.zeros(results.shape[0])
total_curtailed_energy = np.zeros(results.shape[0])
total_wind_solar_curtailment = np.zeros(results.shape[0])
average_existing_gt_cf = np.zeros(results.shape[0])
average_new_gt_cf = np.zeros(results.shape[0])
total_ancillary_cost = np.zeros(results.shape[0])
total_wind_collection_cost = np.zeros(results.shape[0])
data_for_export = np.zeros((results.shape[0], len(export_columns)))
# Find additional load scenarios
additional_load_domain = np.zeros(results.shape[0])
for i in range(results.shape[0]):
additional_load_domain[i] = results[i, 4] + results[i, 5]
# Calculate demand for all scenario runs
avg_baseline_demand = np.sum(np.mean(baseline_demand_hourly_mw[0:T], axis=0))
avg_total_demand = [avg_baseline_demand + i for i in additional_load_domain]
# Find uncurtailed capacity factors
wind_uncurtailed_cf = np.array((np.mean(onshore_pot_hourly[0:T, 0]), np.mean(onshore_pot_hourly[0:T, 1]),
np.mean(offshore_pot_hourly[0:T, 2]), np.mean(offshore_pot_hourly[0:T, 3])))
solar_uncurtailed_cf = np.mean(solar_pot_hourly, axis = 0)
# Hydro, nuclear, and netload costs
total_annual_hydro_cost = np.sum([args.hydro_gen_mw[i] * args.instate_hydro_cost_mwh[i] for i in range(4)]) * 8760
total_annual_nuclear_cost = int(args.nuclear_boolean) * np.sum([args.nuc_gen_mw[i] * args.instate_nuc_cost_mwh[i]
for i in range(4)]) * 8760
net_load_cost, net_load_ramping_cost = load_gt_ramping_costs(args, results, results_ts)
# Calculate existing capacity and transmission cost
total_cap_market_cost = np.sum([args.cap_market_cost_mw_yr[k] * (args.existing_gt_cap_mw[k] +
int(args.nuclear_boolean) * args.nuc_gen_mw[k] +
args.hydro_gen_mw[k]) for k in range(4)])
total_existing_trans_cost = np.sum([float(args.existing_load_mwh[k]) * args.existing_trans_cost_mwh[k]
for k in range(3)])
total_annual_supp_cost = total_existing_trans_cost + total_cap_market_cost
if args.ev_charging_method == 'flexible':
fixed_charging_binary = 0
else:
fixed_charging_binary = 1
# Calculate costs
for i in range(results.shape[0]):
total_new_wind_cost[i] = (
results[i, 6] * (cap_ann * float(args.onshore_cost_mw) + float(args.onshore_fixed_om_cost_mwyr)) +
results[i, 7] * (cap_ann * float(args.offshore_cost_mw) + float(args.offshore_fixed_om_cost_mwyr)))
total_new_solar_cost[i] = (
results[i, 20] * (cap_ann * float(args.solar_cost_mw[0]) + float(args.solar_fixed_om_cost_mwyr)) +
results[i, 21] * (cap_ann * float(args.solar_cost_mw[1]) + float(args.solar_fixed_om_cost_mwyr)) +
results[i, 22] * (cap_ann * float(args.solar_cost_mw[2]) + float(args.solar_fixed_om_cost_mwyr)) +
results[i, 23] * (cap_ann * float(args.solar_cost_mw[3]) + float(args.solar_fixed_om_cost_mwyr)))
total_new_battery_cost[i] = (
results[i, 10] * cap_battery * float(args.battery_cost_mwh) +
results[i, 11] * cap_battery * float(args.battery_cost_mw) +
results[i, 40] * cap_battery * float(args.h2_cost_mwh[0]) +
results[i, 41] * cap_battery * float(args.h2_cost_mwh[1]) +
results[i, 42] * cap_battery * float(args.h2_cost_mwh[2]) +
results[i, 43] * cap_battery * float(args.h2_cost_mwh[3]) +
results[i, 44] * (cap_battery * float(args.h2_cost_mw[0]) + float(args.h2_fixed_om_cost_mwyr)) +
results[i, 45] * (cap_battery * float(args.h2_cost_mw[1]) + float(args.h2_fixed_om_cost_mwyr)) +
results[i, 46] * (cap_battery * float(args.h2_cost_mw[2]) + float(args.h2_fixed_om_cost_mwyr)) +
results[i, 47] * (cap_battery * float(args.h2_cost_mw[3]) + float(args.h2_fixed_om_cost_mwyr)))
total_new_gt_cost[i] = args.reserve_req * (
results[i, 24] * (cap_ann * float(args.new_gt_cost_mw[0]) + float(args.new_gt_fixed_om_cost_mwyr)) +
results[i, 25] * (cap_ann * float(args.new_gt_cost_mw[1]) + float(args.new_gt_fixed_om_cost_mwyr)) +
results[i, 26] * (cap_ann * float(args.new_gt_cost_mw[2]) + float(args.new_gt_fixed_om_cost_mwyr)) +
results[i, 27] * (cap_ann * float(args.new_gt_cost_mw[3]) + float(args.new_gt_fixed_om_cost_mwyr)))
total_new_tx_cost[i] = ((results[i, 56] - tx_tuple_list[0][1]) * tx_tuple_list[0][2] +
(results[i, 57] - tx_tuple_list[2][1]) * tx_tuple_list[2][2] +
(results[i, 58] - tx_tuple_list[4][1]) * tx_tuple_list[4][2] +
(results[i, 59] - tx_tuple_list[1][1]) * tx_tuple_list[1][2] +
(results[i, 60] - tx_tuple_list[3][1]) * tx_tuple_list[3][2] +
(results[i, 61] - tx_tuple_list[5][1]) * tx_tuple_list[5][2])
# Already annualized in tx_tuple_list
total_gas_cost[i] = net_load_cost[i] / args.num_years
total_ramping_cost[i] = net_load_ramping_cost[i] / args.num_years
total_annual_import_cost[i] = (results[i, 52] * args.hq_cost_mwh[0] +
results[i, 53] * args.hq_cost_mwh[1] +
results[i, 54] * args.hq_cost_mwh[2] +
results[i, 55] * args.hq_cost_mwh[3]) * 8760
total_imports = results[i, 15]
# Find Peak Demand
total_demand_ts = results_ts[i, :, args.num_regions * 2: args.num_regions * 3] + \
results_ts[i, :, args.num_regions * 3: args.num_regions * 4] + \
results_ts[i, :, args.num_regions * 4: args.num_regions * 5] # baseline + heating + evs
peak_demand[i] = np.max(np.sum(total_demand_ts, axis = 1))
total_curtailed_energy[i] = np.mean(np.sum(results_ts[i, :, args.num_regions * 13: args.num_regions * 14],
axis = 1))
gen_uncurtailed_windsolar_energy[i] = np.round(results[i, 16] * wind_uncurtailed_cf[0] +
results[i, 17] * wind_uncurtailed_cf[1] +
results[i, 18] * wind_uncurtailed_cf[2] +
results[i, 19] * wind_uncurtailed_cf[3] +
results[i, 20] * solar_uncurtailed_cf[0] +
results[i, 21] * solar_uncurtailed_cf[1] +
results[i, 22] * solar_uncurtailed_cf[2] +
results[i, 23] * solar_uncurtailed_cf[3])
total_renewable_gen[i] = gen_uncurtailed_windsolar_energy[i] + np.sum(args.hydro_gen_mw)
total_wind_solar_curtailment[i] = total_curtailed_energy[i] / gen_uncurtailed_windsolar_energy[i]
average_existing_gt_cf[i] = np.mean(np.sum(results_ts[i, :, args.num_regions * 5: args.num_regions * 6],
axis = 1)) / np.sum(args.existing_gt_cap_mw)
new_gt_cap = results[i, 9]
if new_gt_cap > 0:
average_new_gt_cf[i] = np.mean(np.sum(results_ts[i, :, args.num_regions * 6: args.num_regions * 7],
axis=1)) / new_gt_cap
else:
average_new_gt_cf[i] = 0
# Calculate ancillary service costs
if args.ancillary_boolean:
ancillary_reserve_req = (0.05 * (results[i, 6] + results[i, 7]) +
0.01 * results[i, 8] +
0.03 * avg_total_demand[i])
ancillary_reserve_cost = 14.46557349 # /MW-h
total_ancillary_cost[i] = ancillary_reserve_cost * ancillary_reserve_req * 8760
# Calculate wind collection costs
if args.wind_collection_boolean:
wind_collection_distances = [112.45, 20.84, 56.22, 22.554] # miles
collection_costs = [2400, 4800, 12000, 12000] # $/MW-mi
total_wind_collection_cost[i] = cap_ann * \
(wind_collection_distances[0] * collection_costs[0] * results[i, 16] +
wind_collection_distances[1] * collection_costs[1] * results[i, 17] +
wind_collection_distances[2] * collection_costs[2] * results[i, 18] +
wind_collection_distances[3] * collection_costs[3] * results[i, 19])
total_cost_per_mwh[i] = (total_new_wind_cost[i] + total_new_solar_cost[i]+
total_new_battery_cost[i] + total_new_gt_cost[i] +
total_new_tx_cost[i] + total_gas_cost[i] + total_ramping_cost[i] +
total_annual_supp_cost + total_annual_hydro_cost + total_annual_import_cost[i] +
total_annual_nuclear_cost + total_ancillary_cost[i] +
total_wind_collection_cost[i]) / (avg_total_demand[i] * 8760)
## Populate data_for_export
data_for_export[:, 0] = np.multiply(lct, 100) # RGT/LCT
data_for_export[:, 1] = int(args.rgt_boolean) # RGT Binary
data_for_export[:, 2] = int(args.nuclear_boolean) # Nuclear Binary
data_for_export[:, 3] = int(args.h2_boolean) # H2 Binary
data_for_export[:, 4] = int(args.hq_limit_mw[2]) # HQ-CH Binary
data_for_export[:, 5] = results[:, 4] # Heating Load
data_for_export[:, 6] = results[:, 5] # EV Load
data_for_export[:, 7] = fixed_charging_binary # EV fixed charging
data_for_export[:, 8] = args.ev_charging_hours # EV charging hours
data_for_export[:, 9] = results[:, 6] # Onshore [MW]
data_for_export[:, 10] = results[:, 7] # Offshore [MW]
data_for_export[:, 11] = results[:, 8] # Solar [MW]
data_for_export[:, 12] = results[:, 9] # New GT [MW]
data_for_export[:, 13] = results[:, 10] # Battery Energy [MWh]
data_for_export[:, 14] = results[:, 11] # Battery Power [MW]
data_for_export[:, 15] = results[:, 12] # H2 Energy [MWh]
data_for_export[:, 16] = results[:, 13] # H2 Power [MW]
data_for_export[:, 17] = results[:, 14] # New Trans. [MW]
data_for_export[:, 18] = \
np.round(((results[:, 56] + results[:, 59] - tx_tuple_list[0][1] - tx_tuple_list[1][1]) * 300 / 1000 +
(results[:, 57] + results[:, 60] - tx_tuple_list[2][1] - tx_tuple_list[3][1]) * 150 / 1000 +
(results[:, 58] + results[:, 61] - tx_tuple_list[4][1] - tx_tuple_list[5][1]) * 60 / 1000))
# New Trans. [GW-Mi]
data_for_export[:, 19] = results[:, 52] # Avg. Existing HQ Imports [MW]
data_for_export[:, 20] = results[:, 54] # Avg. New HQ Imports [MW]
data_for_export[:, 21] = peak_demand # Peak load
data_for_export[:, 22] = gen_uncurtailed_windsolar_energy # Average uncurtailed wind + solar generation
data_for_export[:, 23] = total_renewable_gen # Average uncurtailed renewable gen
data_for_export[:, 24] = total_wind_solar_curtailment # wind solar generation curtailment
data_for_export[:, 25] = np.sum(results[:, 36:40]) # Total average battery discharge
data_for_export[:, 26] = np.sum(results[:, 48:52]) # Total average H2 discharge
data_for_export[:, 27] = np.sum(args.existing_gt_cap_mw) # Existing GT cap
data_for_export[:, 28] = average_existing_gt_cf # Existing GT CF
data_for_export[:, 29] = average_new_gt_cf # New GT CF
data_for_export[:, 30] = [total_new_wind_cost[i] / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # Renewable generation capacity cost
data_for_export[:, 31] = [total_new_solar_cost[i] / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # Renewable generation capacity cost
data_for_export[:, 32] = [total_new_battery_cost[i] / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # Battery capacity cost
data_for_export[:, 33] = [total_new_gt_cost[i] / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # New gas turbine capacity cost
data_for_export[:, 34] = [total_new_tx_cost[i] / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # New transmission cost
data_for_export[:, 35] = [total_gas_cost[i] / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # Natural gas cost
data_for_export[:, 36] = [total_ramping_cost[i] / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # Ramping cost
data_for_export[:, 37] = [total_annual_supp_cost / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # Cost of existing capacity and transmission
data_for_export[:, 38] = [total_annual_hydro_cost / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # Cost of existing hydro
data_for_export[:, 39] = [total_annual_import_cost[i] / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # Cost of imported hydro
data_for_export[:, 40] = [total_annual_nuclear_cost / (avg_total_demand[i] * 8760)
for i in range(results.shape[0])] # Cost of nuclear
data_for_export[:, 41] = total_cost_per_mwh # Total LCOE [$/MWh]
data_for_export[:, 42] = results[:, 62] # GHG reductions
results_df = pd.DataFrame(data_for_export, columns=export_columns)
return results_df