-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresults_processing.py
162 lines (137 loc) · 8.71 KB
/
results_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
import pandas as pd
from scipy.interpolate import interp1d
from utils import load_timeseries, get_cap_cost, get_nodes_area, get_connection_info, annualization_rate
def node_results_retrieval(args, m, i, T, sce_sf_area_m2):
# prepared info inputs
dome_load_hourly_kw, solar_po_hourly, rain_rate_daily_mm_m2 = load_timeseries(args)
num_nodes, irrigation_area_m2 = get_nodes_area(args, sce_sf_area_m2)
if args.config == 0:
dome_load = dome_load_hourly_kw / 100 * args.dome_load_rate * (sce_sf_area_m2 / 10000)
elif args.config == 0.5:
dome_load = dome_load_hourly_kw / 100 * args.dome_load_rate * (irrigation_area_m2[i] / 10000)
else:
dome_load = dome_load_hourly_kw / 100 * args.dome_load_rate * (irrigation_area_m2[i] / 10000)
node_df = pd.DataFrame()
node_df['node_id'] = [i]
node_df['solar_cap_kw'] = [m.getVarByName('solar_cap').X]
node_df['diesel_cap_kw'] = [m.getVarByName('diesel_cap').X]
node_df['batt_la_energy_cap_kwh'] = [m.getVarByName('batt_la_energy_cap').X]
node_df['batt_la_power_cap_kw'] = [m.getVarByName('batt_la_power_cap').X]
node_df['batt_li_energy_cap_kwh'] = [m.getVarByName('batt_li_energy_cap').X]
node_df['batt_li_power_cap_kw'] = [m.getVarByName('batt_li_power_cap').X]
node_ts_ar = np.zeros((T,10))
for j in range(T):
node_ts_ar[j,0] = m.getVarByName('solar_util[{}]'.format(j)).X
node_ts_ar[j,1] = m.getVarByName('diesel_gen[{}]'.format(j)).X
node_ts_ar[j,2] = m.getVarByName('batt_la_level[{}]'.format(j)).X
node_ts_ar[j,3] = m.getVarByName('batt_la_charge[{}]'.format(j)).X
node_ts_ar[j,4] = m.getVarByName('batt_la_discharge[{}]'.format(j)).X
node_ts_ar[j,5] = m.getVarByName('batt_li_level[{}]'.format(j)).X
node_ts_ar[j,6] = m.getVarByName('batt_li_charge[{}]'.format(j)).X
node_ts_ar[j,7] = m.getVarByName('batt_li_discharge[{}]'.format(j)).X
node_ts_ar[j,8] = m.getVarByName('irrigation_load[{}]'.format(j)).X
node_ts_ar[:,9] = dome_load[0:T]
return node_df, node_ts_ar
def system_ts_sum(ts_results):
system_ts = np.sum(ts_results, axis=2)
ts_col_names = ['solar_util_kw', 'diesel_util_kw', 'batt_la_level_kwh', 'batt_la_charge_kw', 'batt_la_discharge_kw',
'batt_li_level_kwh', 'batt_li_charge_kw', 'batt_li_discharge_kw',
'irrigation_load_kw', 'domestic_load_kw', ]
system_ts_df = pd.DataFrame(system_ts, columns=ts_col_names)
return system_ts_df
def get_irrigation_ts(args, m, day_start, day_end):
dome_load_hourly_kw, solar_po_hourly, rain_rate_daily_mm_m2 = load_timeseries(args)
# get the daily irrigation time series
daily_ts_ar = np.zeros(((day_end-day_start+1),4))
daily_ts_ar[:,0] = rain_rate_daily_mm_m2[day_start:(day_end+1)]
for d in range(day_end-day_start+1):
daily_ts_ar[d,1] = m.getVarByName('ground_water_level_mm[{}]'.format(d)).X
daily_ts_ar[d,2] = m.getVarByName('ground_water_charge_mm[{}]'.format(d)).X
daily_ts_ar[d,3] = m.getVarByName('ground_water_discharge_mm[{}]'.format(d)).X
irrigation_daily_ts_results = pd.DataFrame(daily_ts_ar, columns=['rain_rate_mm', 'ground_water_level_mm',
'ground_water_charge_mm', 'ground_water_discharge_mm'])
return irrigation_daily_ts_results
def process_results(args, nodes_results, system_ts_results, nodes_capacity_results, sce_sf_area_m2):
# Retrieve necessary model parameters
T = args.num_hours
num_nodes, irrigation_area_m2 = get_nodes_area(args, sce_sf_area_m2)
dome_load_hourly_kw, solar_pot_hourly, rain_rate_daily_mm_m2 = load_timeseries(args)
lv_dist_len, lv_connect_len, mv_connect_len, tx_num, total_tx_cost = tx_results(args, sce_sf_area_m2)
# Calculate demand, generation, solar uncurtailed/actual CF
avg_total_demand = np.mean(system_ts_results.domestic_load_kw) + np.mean(system_ts_results.irrigation_load_kw)
peak_total_demand = np.max(system_ts_results.domestic_load_kw + system_ts_results.irrigation_load_kw)
avg_solar_gen = np.mean(system_ts_results.solar_util_kw)
avg_diesel_gen = np.mean(system_ts_results.diesel_util_kw)
avg_total_gen = avg_solar_gen + avg_diesel_gen
solar_uncurtailed_cf = np.mean(solar_pot_hourly)
solar_actual_cf = avg_solar_gen / np.sum(nodes_results.solar_cap_kw)
# total capital cost and operation cost
solar_cap_cost, battery_la_cap_cost_kwh, battery_li_cap_cost_kwh, \
battery_inverter_cap_cost_kw, diesel_cap_cost_kw = get_cap_cost(args, args.num_year)
solar_unit_price_interpld = interp1d(args.solar_pw_cap_kw, solar_cap_cost)
solar_cost_node = np.zeros(num_nodes)
for i in range(num_nodes):
solar_cost_node[i] = solar_unit_price_interpld(nodes_results.solar_cap_kw[i])
total_solar_cost = np.sum(solar_cost_node)
total_diesel_cost = np.sum(nodes_results.diesel_cap_kw) * diesel_cap_cost_kw
total_battery_la_cost = np.sum(nodes_results.batt_la_energy_cap_kwh) * battery_la_cap_cost_kwh + \
np.sum(nodes_results.batt_la_power_cap_kw) * battery_inverter_cap_cost_kw
total_battery_li_cost = np.sum(nodes_results.batt_li_energy_cap_kwh) * battery_li_cap_cost_kwh + \
np.sum(nodes_results.batt_li_power_cap_kw) * battery_inverter_cap_cost_kw
total_diesel_fuel_cost = avg_diesel_gen * T * args.diesel_cost_liter * args.liter_per_kwh / args.diesel_eff
total_gen_cost = total_solar_cost + total_battery_la_cost + total_battery_li_cost + \
total_diesel_cost + total_diesel_fuel_cost
total_elec_cost = total_gen_cost + total_tx_cost
# Create arrays to store energy output & costs
data_for_export = pd.DataFrame()
## Populate data_for_export
data_for_export['config'] = [args.config]
data_for_export['nodes'] = [num_nodes]
data_for_export['total_irrigation_area_ha'] = [np.sum(irrigation_area_m2)/1e4]
data_for_export['solar_cap_kw'] = [np.sum(nodes_results.solar_cap_kw)]
data_for_export['diesel_cap_kw'] = [np.sum(nodes_results.diesel_cap_kw)]
data_for_export['diesel_cap_kw_in_ds_model'] = [np.sum(nodes_capacity_results.diesel_cap_kw)]
data_for_export['battery_la_energy_cap_kwh'] = [np.sum(nodes_results.batt_la_energy_cap_kwh)]
data_for_export['battery_la_power_cap_kw'] = [np.sum(nodes_results.batt_la_power_cap_kw)]
data_for_export['battery_li_energy_cap_kwh'] = [np.sum(nodes_results.batt_li_energy_cap_kwh)]
data_for_export['battery_li_power_cap_kw'] = [np.sum(nodes_results.batt_li_power_cap_kw)]
data_for_export['MV_connect_wire_m'] = [mv_connect_len]
data_for_export['LV_connect_wire_m'] = [lv_connect_len]
data_for_export['LV_dist_wire_m'] = [lv_dist_len]
data_for_export['transformer_numbers'] = [tx_num]
data_for_export['peak_load_kw'] = [peak_total_demand]
data_for_export['avg_load_kw'] = [avg_total_demand]
data_for_export['avg_gen_kw'] = [avg_total_gen]
data_for_export['avg_solar_gen_kw'] = [avg_solar_gen]
data_for_export['avg_diesel_gen_kw'] = [avg_diesel_gen]
data_for_export['solar_unc_cf'] = [solar_uncurtailed_cf]
data_for_export['solar_act_cf'] = [solar_actual_cf]
data_for_export['solar_cost'] = [total_solar_cost]
data_for_export['diesel_cost'] = [(total_diesel_cost + total_diesel_fuel_cost)]
data_for_export['diesel_cap_cost'] = [total_diesel_cost]
data_for_export['diesel_fuel_cost'] = [total_diesel_fuel_cost]
data_for_export['battery_la_cost'] = [total_battery_la_cost]
data_for_export['battery_li_cost'] = [total_battery_li_cost]
data_for_export['connection_cost'] = [total_tx_cost]
data_for_export['generation_cost'] = [total_gen_cost]
data_for_export['electricity_cost'] = [total_elec_cost]
data_for_export['LCOE'] = [total_elec_cost / (T*avg_total_demand)]
return data_for_export
def tx_results(args, sce_sf_area_m2):
# connection wire
if args.config >= 3:
lv_connect_len, mv_connect_len, tx_num = get_connection_info(args)
else:
lv_connect_len, mv_connect_len, tx_num = 0, 0, 0
# irrigation area --> distribution lv wire
num_nodes, irrigation_area_m2 = get_nodes_area(args, sce_sf_area_m2)
if args.config > 1:
lv_dist_len = np.sum(irrigation_area_m2) * args.dist_lv_m_per_ha / 1e4
else:
lv_dist_len = 0
tx_ann_rate = annualization_rate(args.i_rate, args.annualize_years_trans)
total_tx_cost = args.num_year * tx_ann_rate * ((lv_dist_len+lv_connect_len) * float(args.trans_lv_cost_kw_m) +
mv_connect_len * float(args.trans_mv_cost_kw_m) +
tx_num * float(args.transformer_cost))
return lv_dist_len, lv_connect_len, mv_connect_len, tx_num, total_tx_cost