-
Notifications
You must be signed in to change notification settings - Fork 70
/
visual_lips.py
executable file
·203 lines (161 loc) · 6.59 KB
/
visual_lips.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import sys
import os
sys.path.append("../")
sys.path.append(os.getcwd())
import matplotlib
from matplotlib.patches import Rectangle, Patch
from utils.defense_utils.dbd.model.model import SelfModel, LinearModel
from utils.defense_utils.dbd.model.utils import (
get_network_dbd,
load_state,
get_criterion,
get_optimizer,
get_scheduler,
)
from utils.save_load_attack import load_attack_result
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.aggregate_block.fix_random import fix_random
from visual_utils import *
import yaml
import torch
import numpy as np
# Basic setting: args
args = get_args()
with open(args.yaml_path, "r") as stream:
config = yaml.safe_load(stream)
config.update({k: v for k, v in args.__dict__.items() if v is not None})
args.__dict__ = config
args = preprocess_args(args)
fix_random(int(args.random_seed))
save_path_attack = "./record/" + args.result_file_attack
visual_save_path = save_path_attack + "/visual"
# Load result
if args.prototype:
result_attack = load_prototype_result(args, save_path_attack)
else:
result_attack = load_attack_result(save_path_attack + "/attack_result.pt")
# Load model
model_visual = generate_cls_model(args.model, args.num_classes)
if args.result_file_defense != "None":
save_path_defense = "./record/" + args.result_file_defense
visual_save_path = save_path_defense + "/visual"
result_defense = load_attack_result(
save_path_defense + "/defense_result.pt")
defense_method = args.result_file_defense.split('/')[-1]
if defense_method == 'fp':
model_visual.layer4[1].conv2 = torch.nn.Conv2d(
512, 512 - result_defense['index'], (3, 3), stride=1, padding=1, bias=False)
model_visual.linear = torch.nn.Linear(
(512 - result_defense['index'])*1, args.num_classes)
if defense_method == 'dbd':
backbone = get_network_dbd(args)
model_visual = LinearModel(
backbone, backbone.feature_dim, args.num_classes)
model_visual.load_state_dict(result_defense["model"])
print(f"Load model {args.model} from {args.result_file_defense}")
else:
model_visual.load_state_dict(result_attack["model"])
print(f"Load model {args.model} from {args.result_file_attack}")
model_visual.to(args.device)
# !!! Important to set eval mode !!!
model_visual.eval()
# make visual_save_path if not exist
os.mkdir(visual_save_path) if not os.path.exists(visual_save_path) else None
############## lipschitz constant ##################
print("Plotting lipschitz constant")
module_dict = dict(model_visual.named_modules())
module_names = module_dict.keys()
# Plot Conv2d or Linear
module_visual = [i for i in module_dict.keys() if isinstance(
module_dict[i], torch.nn.Conv2d) or isinstance(module_dict[i], torch.nn.Linear) or isinstance(module_dict[i], torch.nn.BatchNorm2d)]
df = None
max_num_neuron = 0
for module_name in module_visual:
target_layer = module_dict[module_name]
print(f'Collecting Lips {target_layer}')
if isinstance(target_layer, torch.nn.Linear):
channel_lips = []
for idx in range(target_layer.weight.shape[0]):
w = target_layer.weight[idx].reshape(target_layer.weight.shape[1], -1)
# Just norm of weight for linear layer
channel_lips.append(torch.svd(w)[1].max())
channel_lips = torch.Tensor(channel_lips)
elif isinstance(target_layer, torch.nn.BatchNorm2d):
std = target_layer.running_var.sqrt()
weight = target_layer.weight
channel_lips = []
for idx in range(weight.shape[0]):
w = conv.weight[idx].reshape(conv.weight.shape[1], -1) * (weight[idx]/std[idx]).abs()
channel_lips.append(torch.svd(w)[1].max())
channel_lips = torch.Tensor(channel_lips)
# Convolutional layer should be followed by a BN layer by default
elif isinstance(target_layer, torch.nn.Conv2d):
conv = target_layer
channel_lips = []
for idx in range(target_layer.weight.shape[0]):
w = target_layer.weight[idx].reshape(target_layer.weight.shape[1], -1)
channel_lips.append(torch.svd(w)[1].max())
channel_lips = torch.Tensor(channel_lips)
else:
assert False, "Unknown layer type"
for neuron_i in range(channel_lips.shape[0]):
base_row = {}
base_row['layer'] = module_name
base_row['Neuron'] = neuron_i
base_row['Lips'] = channel_lips[neuron_i].item()
if df is None:
df = pd.DataFrame.from_dict([base_row])
else:
df.loc[df.shape[0]] = base_row
df.to_csv(visual_save_path + f"/lips.csv")
start_x0 = 0
height = 1
width = 1
vmin = 0
if args.normalize_by_layer:
vmax = 1
else:
vmax = df.Lips.max()
max_num_neuron = df.Neuron.max()
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax, clip=True)
mapper = matplotlib.cm.ScalarMappable(norm=norm, cmap=matplotlib.cm.Oranges)
fig, ax = plt.subplots(
figsize=(int(len(module_visual)), int(max_num_neuron/10)))
ax.plot([0, 0], [0, 0])
for module_name in module_visual:
print(f'ploting {module_name}')
y_0 = 0
layer_info = df[df.layer == module_name]
layer_lips_max = layer_info['Lips'].max()
total_neuron = layer_info.shape[0]
for neuron_i in range(total_neuron):
x_0 = start_x0
base_row = layer_info.iloc[neuron_i]
if args.normalize_by_layer:
ax.add_patch(Rectangle((x_0, y_0), width, height,
facecolor=mapper.to_rgba(base_row['Lips']/layer_lips_max),
fill=True,
lw=5,
alpha=0.8))
else:
ax.add_patch(Rectangle((x_0, y_0), width, height,
facecolor=mapper.to_rgba(base_row['Lips']),
fill=True,
lw=5,
alpha=0.8))
y_0 += 1.5*height
start_x0 += 1.5*width
x_loc = [0.5*width+1.5*width*i for i in range(len(module_visual))]
y_loc = [0.5*height+1.5*height*i for i in range(max_num_neuron)]
ax.set_xlim(xmin=-0.5*width, xmax=1.5*width*(len(module_visual)+1))
ax.set_ylim(ymin=-0.5*height, ymax=1.5*height*(max_num_neuron+1))
ax.set_xticks(x_loc, module_visual, rotation=270)
ax.set_yticks(y_loc[::10], np.arange(max_num_neuron)[::10])
ax.set_title(f'Lips of Attack Model')
ax.set_ylabel('Neuron')
ax.set_xlabel('Layer')
cb_ax = fig.add_axes([0.15, 0.9, 0.7, 0.01])
fig.colorbar(mapper,
cax=cb_ax, orientation="horizontal", label='Lips')
plt.savefig(visual_save_path + f"/lips.png")
print(f'Save to {visual_save_path + f"/lips"}.png')