forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsudoku.rs
169 lines (143 loc) · 4.57 KB
/
sudoku.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
A Rust implementation of Sudoku solver using Backtracking.
GeeksForGeeks: https://www.geeksforgeeks.org/sudoku-backtracking-7/
*/
pub struct Sudoku {
board: [[u8; 9]; 9],
}
impl Sudoku {
pub fn new(board: [[u8; 9]; 9]) -> Sudoku {
Sudoku { board }
}
fn find_empty_cell(&self) -> Option<(usize, usize)> {
// Find a empty cell in the board (returns (-1, -1) if all cells are filled)
for i in 0..9 {
for j in 0..9 {
if self.board[i][j] == 0 {
return Some((i, j));
}
}
}
None
}
fn check(&self, index_tuple: (usize, usize), value: u8) -> bool {
let (y, x) = index_tuple;
// checks if the value to be added in the board is an acceptable value for the cell
// checking through the row
for i in 0..9 {
if self.board[i][x] == value {
return false;
}
}
// checking through the column
for i in 0..9 {
if self.board[y][i] == value {
return false;
}
}
// checking through the 3x3 block of the cell
let sec_row = y / 3;
let sec_col = x / 3;
for i in (sec_row * 3)..(sec_row * 3 + 3) {
for j in (sec_col * 3)..(sec_col * 3 + 3) {
if y != i && x != j && self.board[i][j] == value {
return false;
}
}
}
true
}
pub fn solve(&mut self) -> bool {
let empty_cell = self.find_empty_cell();
if let Some((y, x)) = empty_cell {
for val in 1..10 {
if self.check((y, x), val) {
self.board[y][x] = val;
if self.solve() {
return true;
}
// backtracking if the board cannot be solved using current configuration
self.board[y][x] = 0
}
}
} else {
// if the board is complete
return true;
}
// returning false the board cannot be solved using current configuration
false
}
pub fn print_board(&self) {
// helper function to display board
let print_3_by_1 = |arr: Vec<u8>, last: bool| {
let str = arr
.iter()
.map(|n| n.to_string())
.collect::<Vec<String>>()
.join(", ");
if last {
println!("{str}",);
} else {
print!("{str} | ",);
}
};
for i in 0..9 {
if i % 3 == 0 && i != 0 {
println!("- - - - - - - - - - - - - -")
}
print_3_by_1(self.board[i][0..3].to_vec(), false);
print_3_by_1(self.board[i][3..6].to_vec(), false);
print_3_by_1(self.board[i][6..9].to_vec(), true);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_sudoku_correct() {
let board: [[u8; 9]; 9] = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
];
let board_result = [
[3, 1, 6, 5, 7, 8, 4, 9, 2],
[5, 2, 9, 1, 3, 4, 7, 6, 8],
[4, 8, 7, 6, 2, 9, 5, 3, 1],
[2, 6, 3, 4, 1, 5, 9, 8, 7],
[9, 7, 4, 8, 6, 3, 1, 2, 5],
[8, 5, 1, 7, 9, 2, 6, 4, 3],
[1, 3, 8, 9, 4, 7, 2, 5, 6],
[6, 9, 2, 3, 5, 1, 8, 7, 4],
[7, 4, 5, 2, 8, 6, 3, 1, 9],
];
let mut sudoku = Sudoku::new(board);
let is_solved = sudoku.solve();
assert!(is_solved);
assert_eq!(sudoku.board, board_result);
}
#[test]
fn test_sudoku_incorrect() {
let board: [[u8; 9]; 9] = [
[6, 0, 3, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
];
let mut sudoku = Sudoku::new(board);
let is_solved = sudoku.solve();
assert!(!is_solved);
}
}