-
Notifications
You must be signed in to change notification settings - Fork 1
/
NWPU_Gen.py
431 lines (383 loc) · 19.3 KB
/
NWPU_Gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import argparse
import os
import numpy as np
import torch
import torchvision
from torchvision import transforms
import cv2
import torch.nn.functional as F
import time
# from osgeo import gdal
from math import ceil
from tifffile import *
import json
from PIL import Image
import cv2
from image_preprocess import load_img
from PIL import Image
# import scipy
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
imgsize = 224
class LULC:
def __init__(self, model_path):
if torch.cuda.is_available():
self.model = torch.load(model_path).to(device)
else:
self.model = torch.load(model_path, map_location='cpu')
self.model.eval()
self.transform = transforms.Compose([
# transforms.ToPILImage(),
transforms.Resize((imgsize, imgsize)), # 将图像转化为128 * 128
transforms.ToTensor(), # 将numpy数据类型转化为Tensor
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # 归一化
])
def detect(self, image):
image = self.transform(image)
image = image.to(device)
image = image.unsqueeze(0)
outputs = self.model(image)
# print('outputs:', outputs)
prob = F.softmax(outputs, dim=1)
# print('prob:', prob[0])
pred = torch.argmax(prob, dim=1)
# pred = pred.numpy()
return prob[0]
def predict_sliding(model, image, tile_size, classes):
# interp = nn.Upsample(size=tile_size, mode='bilinear', align_corners=True)
image_size = image.shape
print(image_size)
overlap = 0 #每次滑动的重合率为1/3
stride = int(ceil(tile_size[0] * (1 - overlap)))
tile_rows = int(ceil((image_size[1] - tile_size[0]) / stride) + 1) #行滑动步数:
tile_cols = int(ceil((image_size[2] - tile_size[1]) / stride) + 1) #列滑动步数:
print("Need %i x %i prediction tiles @ stride %i px" % (tile_cols, tile_rows, stride))
full_probs = np.zeros((image_size[1], image_size[2], classes)) #初始化全概率矩阵
count_predictions = np.zeros((image_size[1], image_size[2], classes)) #初始化计数矩阵
tile_counter = 0 #滑动计数0
for row in range(tile_rows): # row = 0,1
if row % 100 == 0:
print('in row:', row)
for col in range(tile_cols): # col = 0,1,2,3
x1 = int(col * stride) #起始位置x1 = 0 * 513 = 0
y1 = int(row * stride) # y1 = 0 * 513 = 0
x2 = min(x1 + tile_size[1], image_size[2]) #末位置x2 = min(0+769, 2048)
y2 = min(y1 + tile_size[0], image_size[1]) # y2 = min(0+769, 1024)
x1 = max(int(x2 - tile_size[1]), 0) #重新校准起始位置x1 = max(769-769, 0)
y1 = max(int(y2 - tile_size[0]), 0) # y1 = max(769-769, 0)
# print(x1, x2, y1, y2)
img = image[:, y1:y2, x1:x2] #滑动窗口对应的图像 imge[:, :, 0:769, 0:769]
imsave('./temp.jpg', img)
img = cv2.imread('./temp.jpg', 1)
predict_proprely = model.detect(img)
predict_proprely = list(predict_proprely.cpu().data.numpy())
count_predictions[y1:y2, x1:x2] += 1 #窗口区域内的计数矩阵加1
full_probs[y1:y2, x1:x2] += predict_proprely #窗口区域内的全概率矩阵叠加预测结果
tile_counter += 1 #计数加1
full_probs /= count_predictions
return full_probs
def color_predicts(img):
# img = cv2.imread(label_path,cv2.CAP_MODE_GRAY)
color = np.zeros([img.shape[0], img.shape[1], 3]) # BGR
color[img==1] = [0, 255, 255] # 黄色 裸地
color[img==0] = [255, 255, 0] #青色 住宅区
color[img==2] = [0, 255, 0] # 绿色 植被覆盖区
color[img==3] = [255, 0, 0] # 蓝色 水体
color[img==4] = [200, 0, 0]
color[img==5] = [250, 0, 150]# 黄色 裸地
color[img==6] = [255, 255, 0] #青色 住宅区
color[img==7] = [200, 150, 150] # 绿色 植被覆盖区
color[img==8] = [250, 150, 150] # 蓝色 水体
color[img==9] = [0, 200, 0]
color[img==10] = [150, 250, 0] # 黄色 裸地
color[img==11] = [150, 200, 150] #青色 住宅区
color[img==12] = [200, 0, 200] # 绿色 植被覆盖区
color[img==13] = [150, 0, 250] # 蓝色 水体
color[img==14] = [150, 150, 250]
return color
def addImage(img1_path, img2_path, name, im_proj, im_geotrans):
img1 = gdal.Open(img1_path)
im_width = img1.RasterXSize #栅格矩阵的列数
im_height = img1.RasterYSize #栅格矩阵的行数
img1 = img1.ReadAsArray(0,0,im_width,im_height)#获取数据
imsave('..\\Result\\img_ori.png', img1)
img1 = cv2.imread('..\\Result\\img_ori.png')
img2 = cv2.imread(img2_path)
alpha = 0.5
beta = 1-alpha
gamma = 0
img_add = cv2.addWeighted(img1[:, :, :], alpha, img2, beta, gamma)
img_add_path = '..\\Result\\' + str(name).replace('.tif', '') + '#' + 'img_add.png'
imsave(img_add_path, img_add)
# write_img(img_add_path, im_proj, im_geotrans, img_add)
def test_image_predict_top_k(lulc1, lulc2, lulc3, test_image_path):
#model.load_weights(WEIGHTS_PATH)
image_list = generator_list_of_imagepath(test_image_path)
print(image_list)
predict_label = []
# class_indecs = label_of_directory(directory)
len_img = len(image_list)
for i in range(len(image_list)):
try:
print(image_list[i])
# img = cv2.imread(image_list[i])
img = Image.open(image_list[i]).convert('RGB')
# predict_proprely = model.detect(img)
predict_proprely1 = lulc1.detect(img)
predict_proprely2 = lulc2.detect(img)
predict_proprely3 = lulc3.detect(img)
predict_proprely = 0.33*predict_proprely1 + 0.34*predict_proprely2 + 0.33*predict_proprely3
predict_proprely = list(predict_proprely.cpu().data.numpy())
# predict_proprely = list(predict_proprely.cpu().data.numpy())
# return a list of label max->min
# label_index = get_label_predict_top_k(img, model)
# label_value_dict = []
# for label in label_index:
# # label_value = get_key_from_value(class_indecs, label)
# label_value_dict.append(label)
predict_label.append(predict_proprely)
except:
if i < len_img:
image_list.pop(i)
len_img = len_img -1
# print(label_index)
return image_list, predict_label
def get_label_predict_top_k(predict_proprely, top_k):
"""
image = load_image(image), input image is a ndarray
return top-5 of label
"""
# array 2 list
# predict_proprely = model.predict(image)
# print(np.argmax(predict_proprely)/100)
predict_list = list(predict_proprely)
min_label = min(predict_list)
label_k = []
for i in range(top_k):
label = np.argmax(predict_list)
#print(label)
predict_list.remove(predict_list[label])
predict_list.insert(label, min_label)
label_k.append(label)
# print(label_k)
return label_k
def write_img(filename,im_proj,im_geotrans,im_data):
#gdal数据类型包括
#gdal.GDT_Byte,
#gdal .GDT_UInt16, gdal.GDT_Int16, gdal.GDT_UInt32, gdal.GDT_Int32,
#gdal.GDT_Float32, gdal.GDT_Float64
#判断栅格数据的数据类型
if 'int8' in im_data.dtype.name:
datatype = gdal.GDT_Byte
elif 'int16' in im_data.dtype.name:
datatype = gdal.GDT_UInt16
else:
datatype = gdal.GDT_Float32
#判读数组维数
if len(im_data.shape) == 3:
im_bands, im_height, im_width = im_data.shape
else:
im_bands, (im_height, im_width) = 1,im_data.shape
#创建文件
driver = gdal.GetDriverByName("GTiff") #数据类型必须有,因为要计算需要多大内存空间
dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
dataset.SetGeoTransform(im_geotrans) #写入仿射变换参数
dataset.SetProjection(im_proj) #写入投影
if im_bands == 1:
dataset.GetRasterBand(1).WriteArray(im_data) #写入数组数据
else:
for i in range(im_bands):
dataset.GetRasterBand(i+1).WriteArray(im_data[i])
del dataset
def select_top_k(acc=.9):
sampled_image_dict = {}
sampled_image_dict["all"] = []
k = 1000000
with open("./sampling_dict_NWPU.json", "r", encoding="utf-8", errors="ignore") as f:
load_data = json.load(f)
for key in load_data.keys():
# print("label: ", key)
all_items = load_data[key]
all_items.sort(key=lambda x: x[1], reverse=True)
# all_items_array = all_items\
len_item_list = len(all_items)
# print(all_items)
# print("each label item count: ", len(all_items))
# if len(all_items) < k:
# k = int(len(all_items))
for items_index in range(len(all_items)):
# print(all_items[items_index])
if float(all_items[items_index][1]) < acc:
# print(all_items[items_index], int(key))
# all_items_array.pop(items_index)
len_item_list -= 1
if len_item_list < k:
k = len_item_list
for key in load_data.keys():
print("label: ", key)
all_items = load_data[key]
all_items.sort(key=lambda x: x[1], reverse=True)
all_items = np.array(all_items)
print("each label item count: ", len(all_items))
# if len(all_items) < k:
# k = int(len(all_items))
print(k)
for index in range(0, k):
sampled_image_dict["all"].append([all_items[index][0], int(key)])
print("Saving.. selected image json")
j = json.dumps(sampled_image_dict)
with open("./selected_image_NWPU.json", "w") as f:
f.write(j)
def select_top_k2(k=10):
sampled_image_dict = {}
sampled_image_dict["all"] = []
with open("./sampling_dict_NWPU.json", "r", encoding="utf-8", errors="ignore") as f:
load_data = json.load(f)
for key in load_data.keys():
print("label: ", key)
all_items = load_data[key]
all_items.sort(key=lambda x: x[1], reverse=True)
all_items = np.array(all_items)
print("each label item count: ", len(all_items))
if len(all_items) < k:
k = int(len(all_items))
for index in range(0, k):
sampled_image_dict["all"].append([all_items[index][0], int(key)])
print("Saving.. selected image json")
j = json.dumps(sampled_image_dict)
with open("./selected_image_NWPU.json", "w") as f:
f.write(j)
test_image_path = '.\\NWPU\\unlabel_data\\'
# print(len(generator_list_of_imagepath(test_image_path)))
def label_of_directory(directory):
"""
sorted for label indices
return a dict for {'classes', 'range(len(classes))'}
"""
classes = []
for subdir in sorted(os.listdir(directory)):
if os.path.isdir(os.path.join(directory, subdir)):
classes.append(subdir)
num_classes = len(classes)
class_indices = dict(zip(classes, range(len(classes))))
#print(num_classes)#,class_indices(classes))
return class_indices
def generator_list_of_imagepath(test_image_path):
image_list = []
dict = label_of_directory(test_image_path)
# print(dict)
for folder in dict:
img_list = [f for f in os.listdir(os.path.join(test_image_path, folder)) if not f.startswith('.')]
for img in img_list:
str0 = os.path.join(test_image_path, os.path.join(folder, img))
image_list.append(str0)
return image_list
# print(generator_list_of_imagepath(test_image_path))
def main():
# label_dict = {'Built-up': 0, 'bareland': 1, 'vegetation_coverage': 2, 'water': 3}
# label_dict = {'arbor_woodland': 0, 'artificial_grassland': 1, 'dry_cropland': 2, 'garden_plot': 3, 'industrial_land': 4, 'irrigated_land': 5, 'lake': 6, 'natural_grassland': 7, 'paddy_field': 8, 'pond': 9, 'river': 10, 'rural_residential': 11, 'shrub_land': 12, 'traffic_land': 13, 'urban_residential': 14}
# label_dict = {'bareland': 0, 'cropland': 1, 'forest': 2, 'impervious': 3, 'shrub': 4, 'water': 5}
# label_dict = {'bareland': 0, 'cropland': 1, 'forest': 2, 'impervious': 3, 'shrub': 4, 'water': 5}
label_dict = {'airplane': 0, 'airport': 1, 'baseball_diamond': 2, 'basketball_court': 3, 'beach': 4, 'bridge': 5, 'chaparral': 6, 'church': 7, 'circular_farmland': 8, 'cloud': 9, 'commercial_area': 10, 'dense_residential': 11, 'desert': 12, 'forest': 13, 'freeway': 14, 'golf_course': 15, 'ground_track_field': 16, 'harbor': 17, 'industrial_area': 18, 'intersection': 19, 'island': 20, 'lake': 21, 'meadow': 22, 'medium_residential': 23, 'mobile_home_park': 24, 'mountain': 25, 'overpass': 26, 'palace': 27, 'parking_lot': 28, 'railway': 29, 'railway_station': 30, 'rectangular_farmland': 31, 'river': 32, 'roundabout': 33, 'runway': 34, 'sea_ice': 35, 'ship': 36, 'snowberg': 37, 'sparse_residential': 38, 'stadium': 39, 'storage_tank': 40, 'tennis_court': 41, 'terrace': 42, 'thermal_power_station': 43, 'wetland': 44}
lulc1 = LULC('.\\model-NWPU\\NWPU-45-teacher-ResNet50-1.pth')
lulc2 = LULC('.\\model-NWPU\\NWPU-45-teacher-resnext50_32x4d-1.pth')
lulc3 = LULC('.\\model-NWPU\\NWPU-45-teacher-shufflenetv2_x1-1.pth')
# lulc = LULC('./model/lulc_6-50.pth')
# root = '../image'
# img_list = [f for f in os.listdir(root) if f.endswith('.jpg')]
# for img in img_list:
# image = cv2.imread(os.path.join(root, img))
# pred = lulc.detect(image)
# print(list(label_dict.keys())[list(label_dict.values()).index(pred)])
# cv2.imshow('test', image)
# cv2.waitKey(0)
# test_image_path = '..\\unlabel\\'
test_image_path = '.\\NWPU\\unlabel_data\\'
print("=====test label=====")
# model.summary()
image_list, predict_label = test_image_predict_top_k(lulc1, lulc2, lulc3, test_image_path)
print(len(image_list))
sampling_dictionary = {}
maxk = max((1, ))
batch_image_path = image_list
output = torch.tensor(predict_label)
_, top_p = output.topk(maxk, 1, True, True) # maxk = 10
# [1,2,3] =[[2,3],[]]
# print(top_p.t())
# make sampling dictionary
for top in top_p.t():
for idx, i in enumerate(top):
num = i.data.cpu().numpy()
value = float(output[idx][i].data.cpu().numpy())
if str(num) in sampling_dictionary:
sampling_dictionary[str(num)].append([batch_image_path[idx], value])
else:
sampling_dictionary[str(num)] = [[batch_image_path[idx], value]]
print("Saving.. sampling_dict")
j = json.dumps(sampling_dictionary)
with open("./sampling_dict_NWPU.json", "w") as f:
f.write(j)
def gen_data():
# main()
# label_dict = {'arbor_woodland': 0, 'artificial_grassland': 1, 'dry_cropland': 2, 'garden_plot': 3, 'industrial_land': 4, 'irrigated_land': 5, 'lake': 6, 'natural_grassland': 7, 'paddy_field': 8, 'pond': 9, 'river': 10, 'rural_residential': 11, 'shrub_land': 12, 'traffic_land': 13, 'urban_residential': 14}
# label_dict = {'bareland': 0, 'cropland': 1, 'forest': 2, 'impervious': 3, 'shrub': 4, 'water': 5}
label_dict = {'airplane': 0, 'airport': 1, 'baseball_diamond': 2, 'basketball_court': 3, 'beach': 4, 'bridge': 5, 'chaparral': 6, 'church': 7, 'circular_farmland': 8, 'cloud': 9, 'commercial_area': 10, 'dense_residential': 11, 'desert': 12, 'forest': 13, 'freeway': 14, 'golf_course': 15, 'ground_track_field': 16, 'harbor': 17, 'industrial_area': 18, 'intersection': 19, 'island': 20, 'lake': 21, 'meadow': 22, 'medium_residential': 23, 'mobile_home_park': 24, 'mountain': 25, 'overpass': 26, 'palace': 27, 'parking_lot': 28, 'railway': 29, 'railway_station': 30, 'rectangular_farmland': 31, 'river': 32, 'roundabout': 33, 'runway': 34, 'sea_ice': 35, 'ship': 36, 'snowberg': 37, 'sparse_residential': 38, 'stadium': 39, 'storage_tank': 40, 'tennis_court': 41, 'terrace': 42, 'thermal_power_station': 43, 'wetland': 44}
print('gen data')
select_top_k(0.650)
with open("./selected_image_NWPU.json", "r", encoding="utf-8", errors="ignore") as f:
json_data = json.load(f)
image_list = json_data["all"]
# random.shuffle(image_list)
# print(image_list)
print(image_list)
# F:\Shenzhen
# im = Image.open('G:\\LULC\\unlabeltest\\11828.jpg')
# im = image.load_img(img[0]) # , target_size=(224, 224))
# print(im)
# 图像预处理
# im = image.img_to_array(im)
for img in image_list:
print(img)
label_image = list(label_dict.keys())[list(label_dict.values()).index(img[1])]
# save_img_path = os.path.join('.\\Shenzhen7-5-5\\train_data', label_image)
# print(img[0], save_img_path)
# im = gdal.Open(image[0])
# im_width = im.RasterXSize #栅格矩阵的列数
# im_height = im.RasterYSize #栅格矩阵的行数
# im = im.ReadAsArray(0,0,im_width,im_height)#获取数据
try:
# im = cv2.imread('G:\\LULC\\unlabeltest\\11828.jpg', 1)
# print(im.shape)
im = load_img(img[0]) # , target_size=(224, 224))
# print(im.shape)
# im.save('./image.jpg')
# 图像预处理
# im = image.img_to_array(im)
# im = cv2.imread(img[0])
# im.save(os.path.join(save_img_path, img[0].split('\\')[-1].replace('tif', 'png')))
if not os.path.exists('.\\GenDatasetNWPU'):
os.mkdir('.\\GenDatasetNWPU')
if not os.path.exists(os.path.join('.\\GenDatasetNWPU', label_image)):
os.mkdir(os.path.join('.\\GenDatasetNWPU', label_image))
print(os.path.join(os.path.join('.\\GenDatasetNWPU', label_image), img[0].split('\\')[-1]))
im.save(os.path.join(os.path.join('.\\GenDatasetNWPU', label_image), img[0].split('\\')[-1]))
# os.remove(img[0])
except:
print('image deleted!')
# im = load_img(img[0]) # , target_size=(224, 224))
# # print(im.shape)
# # im.save('./image.jpg')
# # 图像预处理
# # im = image.img_to_array(im)
# # im = cv2.imread(img[0])
# # im.save(os.path.join(save_img_path, img[0].split('\\')[-1].replace('tif', 'png')))
# if not os.path.exists('.\\GenData_Shenzhen'):
# os.mkdir('.\\GenData_Shenzhen')
# if not os.path.exists(os.path.join('.\\GenData_Shenzhen', label_image)):
# os.mkdir(os.path.join('.\\GenData_Shenzhen', label_image))
# print(os.path.join(os.path.join('.\\GenData_Shenzhen', label_image), img[0].split('\\')[-1].replace('tif', 'png')))
# im.save(os.path.join(os.path.join('.\\GenData_Shenzhen', label_image), img[0].split('\\')[-1].replace('tif', 'png')))
# # os.remove(img[0])
if __name__ == '__main__':
main()
gen_data()