-
Notifications
You must be signed in to change notification settings - Fork 1
/
AID-ResNeXt-train.py
280 lines (251 loc) · 14.1 KB
/
AID-ResNeXt-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import time
import torch
import torchvision
from torch import nn, optim
from torch.utils import data
from torchvision import transforms
from dataset_AID import CarDateSet
# from resnet_lulc_AID import ResNet18, ResNet34, ResNet50, ResNet101
import argparse
# from ResNext_AID import resnext50_32x4d
# from MSDnet_AID import msdnet
from torchvision.models import resnet50, resnext50_32x4d, densenet121
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def main(args):
# Create model
if not os.path.exists(args.model_path):
os.makedirs(args.model_path)
train_datasets = CarDateSet('.\\AID\\train_data\\', './data/trainAID-teacher.txt', transforms=None)
test_datasets = CarDateSet('.\\AID\\test_data\\', './data/testAID-teacher.txt', transforms=None)
# test_datasets = CarDateSet('G:\\LULC\\PytorchLULC\\AID-RESISC30-unlabel-test\\test_data\\', './data/testAID.txt', transforms=None)
train_loader = torch.utils.data.DataLoader(dataset=train_datasets,
batch_size=args.batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_datasets,
batch_size=args.batch_size,
shuffle=True)
print("Train numbers:{:d}".format(len(train_datasets)))
print("Test numbers:{:d}".format(len(test_datasets)))
if args.pretrained:
model = ResNet50(num_classes=1000)
model.load_state_dict(torch.load(args.pretrained_model))
channel_in = model.fc.in_features # 获取fc层的输入通道数
# 然后把resnet的fc层替换成自己分类类别的fc层
model.fc = nn.Linear(channel_in, args.num_class)
else:
# model1 = ResNet50(args.num_class)
# model1 = resnet50(pretrained=False)
# # model.load_state_dict(torch.load(args.pretrained_model))
# channel_in = model1.fc.in_features # 获取fc层的输入通道数
# # 然后把resnet的fc层替换成自己分类类别的fc层
# model1.fc = nn.Linear(channel_in, args.num_class)
# model2 = ResNet34()
model2 = resnext50_32x4d(pretrained=False)
model2.load_state_dict(torch.load(args.pretrained_model))
channel_in_2 = model2.fc.in_features # 获取fc层的输入通道数
# 然后把resnet的fc层替换成自己分类类别的fc层
model2.fc = nn.Linear(channel_in_2, args.num_class)
# model3 = densenet121()
# channel_in_3 = model3.classifier.in_features # 获取fc层的输入通道数
# # 然后把resnet的fc层替换成自己分类类别的fc层
# model3.classifier = nn.Linear(channel_in_3, args.num_class)
# print(model3)
# channel_in_3 = model3.classifier[0] # 获取fc层的输入通道数
# # 然后把resnet的fc层替换成自己分类类别的fc层
# model3.fc = nn.Linear(channel_in_3, args.num_class)
# print('model1 parameters:', sum(p.numel() for p in model1.parameters() if p.requires_grad))
print('model2 parameters:', sum(p.numel() for p in model2.parameters() if p.requires_grad))
# print('model3 parameters:', sum(p.numel() for p in model3.parameters() if p.requires_grad))
# model1 = model1.to(device)
model2 = model2.to(device)
# model3 = model3.to(device)
# cost1 = nn.CrossEntropyLoss().to(device)
cost2 = nn.CrossEntropyLoss().to(device)
# cost3 = nn.CrossEntropyLoss().to(device)
# Optimization
# optimizer1 = optim.Adam(model1.parameters(), lr=args.lr, weight_decay=1e-6)
optimizer2 = optim.Adam(model2.parameters(), lr=args.lr, weight_decay=1e-6)
# optimizer3 = optim.Adam(model3.parameters(), lr=args.lr, weight_decay=1e-6)
# best_acc_1 = 0.
best_acc_2 = 0.
# best_acc_3 = 0.
for epoch in range(1, args.epochs + 1):
# model1.train()
model2.train()
# model3.train()
# start time
start = time.time()
index = 0
for images, labels in train_loader:
images = images.to(device)
# print(images.shape)
labels = labels.to(device)
# Forward pass
# outputs1 = model1(images)
outputs2 = model2(images)
# outputs3 = model3(images)
# loss1 = cost1(outputs1, labels)
loss2 = cost2(outputs2, labels)
# loss3 = cost3(outputs3, labels)
# if index % 10 == 0:
# print (loss)
# Backward and optimize
# optimizer1.zero_grad()
optimizer2.zero_grad()
# optimizer3.zero_grad()
# loss1.backward()
loss2.backward()
# loss3.backward()
# optimizer1.step()
optimizer2.step()
# optimizer3.step()
index += 1
if epoch % 1 == 0:
end = time.time()
# print("Epoch [%d/%d], Loss: %.8f, Time: %.1fsec!" % (epoch, args.epochs, loss1.item(), (end-start) * 2))
print("Epoch [%d/%d], Loss: %.8f, Time: %.1fsec!" % (epoch, args.epochs, loss2.item(), (end-start) * 2))
# print("Epoch [%d/%d], Loss: %.8f, Time: %.1fsec!" % (epoch, args.epochs, loss3.item(), (end-start) * 2))
# model1.eval()
model2.eval()
# model3.eval()
# classes = ('bareland', 'cropland', 'forest', 'impervious', 'shrub', 'water')
classes = ('Airport', 'BareLand', 'BaseballField', 'Beach', 'Bridge', 'Center', 'Church', 'Commercial', 'DenseResidential', 'Desert', 'Farmland', 'Forest', 'Industrial', 'Meadow', 'MediumResidential', 'Mountain', 'Park', 'Parking', 'Playground', 'Pond', 'Port', 'RailwayStation', 'Resort', 'River', 'School', 'SparseResidential', 'Square', 'Stadium', 'StorageTanks', 'Viaduct')
# classes = ('1 industrial land', '10 shrub land', '11 natural grassland', '12 artificial grassland', '13 river', '14 lake', '15 pond', '2 urban residential', '3 rural residential', '4 traffic land', '5 paddy field', '6 irrigated land', '7 dry cropland', '8 garden plot', '9 arbor woodland')
class_correct1 = list(0. for i in range(args.num_class))
class_total1 = list(0. for i in range(args.num_class))
class_correct2 = list(0. for i in range(args.num_class))
class_total2 = list(0. for i in range(args.num_class))
class_correct3 = list(0. for i in range(args.num_class))
class_total3 = list(0. for i in range(args.num_class))
class_correct_all = list(0. for i in range(args.num_class))
class_total_all = list(0. for i in range(args.num_class))
correct_prediction_1 = 0.
total_1 = 0
correct_prediction_2 = 0.
total_2 = 0
correct_prediction_3 = 0.
total_3 = 0
correct_prediction_all = 0.
total_all = 0
with torch.no_grad():
for images, labels in test_loader:
# to GPU
images = images.to(device)
labels = labels.to(device)
# outputs1 = model1(images)
# _1, predicted1 = torch.max(outputs1, 1)
# c1 = (predicted1 == labels).squeeze()
# for label_idx in range(len(labels)):
# label = labels[label_idx]
# class_correct1[label] += c1[label_idx].item()
# class_total1[label] += 1
# total_1 += labels.size(0)
# # add correct
# correct_prediction_1 += (predicted1 == labels).sum().item()
outputs2 = model2(images)
_2, predicted2 = torch.max(outputs2, 1)
c2 = (predicted2 == labels).squeeze()
for label_idx in range(len(labels)):
label = labels[label_idx]
class_correct2[label] += c2[label_idx].item()
class_total2[label] += 1
total_2 += labels.size(0)
# add correct
correct_prediction_2 += (predicted2 == labels).sum().item()
# outputs3 = model3(images)
# _3, predicted3 = torch.max(outputs3, 1)
# c3 = (predicted3 == labels).squeeze()
# for label_idx in range(len(labels)):
# label = labels[label_idx]
# class_correct3[label] += c3[label_idx].item()
# class_total3[label] += 1
#
# total_3 += labels.size(0)
# # add correct
# correct_prediction_3 += (predicted3 == labels).sum().item()
#
# blending_y_pred = outputs1 * 0.33 + outputs2 * 0.34 + outputs3 * 0.33
# _, predicted_blending = torch.max(blending_y_pred, 1)
# c_all = (predicted_blending == labels).squeeze()
# for label_idx in range(len(labels)):
# label = labels[label_idx]
# class_correct_all[label] += c_all[label_idx].item()
# class_total_all[label] += 1
#
# total_all += labels.size(0)
# # add correct
# correct_prediction_all += (predicted_blending == labels).sum().item()
# for i in range(args.num_class):
# print('Model ResNet50 - Accuracy of %5s : %2d %%: Correct Num: %d in Total Num: %d' % (
# classes[i], 100 * class_correct1[i] / class_total1[i], class_correct1[i], class_total1[i]))
# acc_1 = correct_prediction_1 / total_1
# print("Total Acc Model ResNet50: %.4f" % (correct_prediction_1 / total_1))
# print('----------------------------------------------------')
for i in range(args.num_class):
print('Model ResNeXt - Accuracy of %5s : %2d %%: Correct Num: %d in Total Num: %d' % (
classes[i], 100 * class_correct2[i] / class_total2[i], class_correct2[i], class_total2[i]))
acc_2 = correct_prediction_2 / total_2
print("Total Acc Model ResNeXt: %.4f" % (correct_prediction_2 / total_2))
print('----------------------------------------------------')
# for i in range(args.num_class):
# print('Model MSDNet - Accuracy of %5s : %2d %%: Correct Num: %d in Total Num: %d' % (
# classes[i], 100 * class_correct3[i] / class_total3[i], class_correct3[i], class_total3[i]))
# print("Total Acc Model MSDNet: %.4f" % (correct_prediction_3 / total_3))
# acc_3 = correct_prediction_3 / total_3
# print('----------------------------------------------------')
# for i in range(args.num_class):
# print('Model blending - Accuracy of %5s : %2d %%: Correct Num: %d in Total Num: %d' % (
# classes[i], 100 * class_correct_all[i] / class_total_all[i], class_correct_all[i], class_total_all[i]))
# print("Total Acc Model blending: %.4f" % (correct_prediction_all / total_all))
# print('####################################################')
# correct_prediction = 0.
# total = 0
# for images, labels in test_loader:
# # to GPU
# images = images.to(device)
# labels = labels.to(device)
# # print prediction
# outputs = model(images)
# # equal prediction and acc
#
# _, predicted = torch.max(outputs.data, 1)
# # val_loader total
# total += labels.size(0)
# # add correct
# correct_prediction += (predicted == labels).sum().item()
# print("Acc: %.4f" % (correct_prediction / total))
# Save the model checkpoint
# if acc_1 > best_acc_1:
# print('save new best acc_1', acc_1)
# torch.save(model1, os.path.join(args.model_path, 'AID-30-teacher-ResNet50-%s.pth' % (args.model_name)))
# best_acc_1 = acc_1
if acc_2 > best_acc_2:
print('save new best acc_2', acc_2)
torch.save(model2, os.path.join(args.model_path, 'AID-30-teacher-resnext50_32x4d.pth'))
best_acc_2 = acc_2
# if acc_3 > best_acc_3:
# print('save new best acc_3', acc_3)
# torch.save(model3, os.path.join(args.model_path, 'AID-30-teacher-densenet121-%s.pth' % (args.model_name)))
# best_acc_3 = acc_3
print("Model save to %s."%(os.path.join(args.model_path, 'AID-30-teacher-model-%s.pth' % (args.model_name))))
# print('save new best acc_1', best_acc_1)
print('save new best acc_2', best_acc_2)
# print('save new best acc_3', best_acc_3)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='train hyper-parameter')
parser.add_argument("--num_class", default=30, type=int)
parser.add_argument("--epochs", default=100, type=int)
# parser.add_argument("--net", default='ResNet50', type=str)
# parser.add_argument("--depth", default=50, type=int)
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--batch_size", default=8, type=int)
# parser.add_argument("--num_workers", default=2, type=int)
parser.add_argument("--model_name", default='AID-30-teacher', type=str)
parser.add_argument("--model_path", default='./model-AID', type=str)
parser.add_argument("--pretrained", default=False, type=bool)
parser.add_argument("--pretrained_model", default='./ImageNet-models/resnext50_32x4d-7cdf4587.pth', type=str)
args = parser.parse_args()
main(args)