forked from KirstyPringle/UKCA_postproc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExamples_of_plots.py
181 lines (112 loc) · 4.6 KB
/
Examples_of_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 28 16:53:19 2016
@author: eejvt
"""
import iris
import sys
##CHANGE THE PATH TO THE DIRECTORY WHERE YOUR SCRIPTS ARE
directory_scripts='/nfs/see-fs-01_users/eejvt/tests/UKCA_postproc/'
sys.path.append(directory_scripts)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import os
cwd = os.getcwd()+'/'
if not os.path.isfile(directory_scripts+'UKCA_lib.py'):
raise NameError(directory_scripts+'UKCA_lib.py does not exist \n Change directory_scripts to the folder where you downloaded UKCA_postproc ')
'''
I recomend using Spyder for going through this tutorial
In Spyder, you can run single lines with F9
or whole blocks separated by #%% with Control+Enter (or Control+Shift+Enter)
'''
'''
Examples of ploting routines
'''
#Loading a cube is as simple as:
#set the path to the file:
path_to_nc_file=directory_scripts+'test_cube_PM25.nc'#Run this line in Spyder with F9 and the following.
cube=iris.load(path_to_nc_file)[0]#and loading it. We add [0] at the end, as iris.load load the cubes in a list.
#Alternativelly you can use iris.load_cube(path_to_nc_file) for just a single cube
#Let's see how the cube looks like
print cube
#We can check things such as the shape, number of dimensions etc...
print cube.shape
print cube.ndim
#we can subset our cube, for example, for a single month, let's say, january (0 as in python lists indexes start in 0 not 1)
cube_january=cube[0,:,:,:]
#we can also calculate the mean through all the time period
cube_time_mean=cube.collapsed(['time'],iris.analysis.MEAN)
#see how the dimensions have changed
print 'cube shape ',cube.shape
print 'cube_time_mean shape ',cube_time_mean.shape
#if we want to get the surface level:
cube_surface=cube_time_mean[0,:,:]
#This is specifically of the sample cube included in the repo.
#For other formats of nc files, the surface level might be other than 0
#%%
#lets do a quick plot of the surface
#In spyder you can run this whole block with Control+Enter (Comand+Enter in mac)
import iris.quickplot as qplt
plt.figure()
qplt.contourf(cube_surface)
# add coastlines
plt.gca().coastlines()
plt.show()
#%%
#it doesn't look very good on linear scale, let's do logarithmic scale
plt.figure()
qplt.contourf(cube_surface,norm=matplotlib.colors.LogNorm())
plt.gca().coastlines()
plt.show()
#%%
#The colors do not look very good, let's choose another colorscale
cmap=plt.cm.CMRmap_r#more on : http://matplotlib.org/examples/color/colormaps_reference.html
plt.figure()
qplt.contourf(cube_surface,cmap=cmap,norm=matplotlib.colors.LogNorm())
plt.gca().coastlines()
plt.show()
#%%
#Now lets use the functions of UKCA_lib
import UKCA_lib as ukl
reload(ukl)# This bit is necessary if you have modified UKCA_lib
#ukl.level_plot
print 'Current working directory:', os.getcwd()+'/'
print 'The files will be saved there'
saving_path=os.getcwd()+'/'
#Plotting something is as easy as:
ukl.level_plot(cube_time_mean,saving_path)
#ukl.level_plot(cube,saving_path)
#Now the file will be in saving_path
print saving_path
#go to the saving_path there and check it
#If you are using Spyder, you can look at the documentation any function
#by setting the cursor in the name of the function
# and pressin Control+I
#you should see somethig like:
'''
This function works for 3 dimensional cubes (model_level_number, latitude, longitude)
It plots and saves a png file (by default)
You can use it like:
ukl.level_plot(cube_time_mean,saving_path)
By default, it plots the cube at level 0 (surface_level) in linear scale and saves it in the path given.
you can change 'level' for plotting a different level
For example
lev=22
ukl.level_plot(cube_time_mean,saving_path,level=lev)
Other kargs:
'name' sets a different name in the saved file. By default it uses cube.var_name
'color_levels' is an integrer number for setting how many levels you want
'logscale' if set to true, the plot will be in logarithmic scale
'cmap' changes the mapping colors
'saving_format' can be set to something different than png to change the format of the plot
'''
#let's change some of the optional parameters (kwargs) of the function
lev=22#this variable sets the level
name='personalized_plot'# this will be added to the file name
color_levels=15#more levels in the colors
cmap=plt.cm.RdBu_r#color map
saving_format='.jpg'#saving format
ukl.level_plot(cube_time_mean,saving_path,name=name,level=lev,color_levels=color_levels,cmap=cmap,saving_format=saving_format)
#Now in logarithmic scale. We need to set logscale=True (or anything different from 0 (False))
ukl.level_plot(cube_time_mean,saving_path,name=name,level=lev,cmap=cmap,logscale=True)