forked from erigontech/erigon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrypto.go
326 lines (287 loc) · 10.3 KB
/
crypto.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package crypto
import (
"bufio"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"encoding/hex"
"errors"
"fmt"
"hash"
"io"
"math/big"
"os"
"github.com/holiman/uint256"
libcommon "github.com/ledgerwatch/erigon-lib/common"
"golang.org/x/crypto/sha3"
"github.com/ledgerwatch/erigon/crypto/cryptopool"
"github.com/ledgerwatch/erigon/common/hexutil"
"github.com/ledgerwatch/erigon/common/math"
"github.com/ledgerwatch/erigon/common/u256"
"github.com/ledgerwatch/erigon/rlp"
)
// SignatureLength indicates the byte length required to carry a signature with recovery id.
const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id
// RecoveryIDOffset points to the byte offset within the signature that contains the recovery id.
const RecoveryIDOffset = 64
// DigestLength sets the signature digest exact length
const DigestLength = 32
var (
secp256k1N = new(uint256.Int).SetBytes(hexutil.MustDecode("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"))
secp256k1NBig = secp256k1N.ToBig()
secp256k1halfN = new(uint256.Int).Div(secp256k1N, u256.Num2)
)
var errInvalidPubkey = errors.New("invalid secp256k1 public key")
// KeccakState wraps sha3.state. In addition to the usual hash methods, it also supports
// Read to get a variable amount of data from the hash state. Read is faster than Sum
// because it doesn't copy the internal state, but also modifies the internal state.
type KeccakState interface {
hash.Hash
Read([]byte) (int, error)
}
// NewKeccakState creates a new KeccakState
func NewKeccakState() KeccakState {
return cryptopool.NewLegacyKeccak256().(KeccakState)
}
// HashData hashes the provided data using the KeccakState and returns a 32 byte hash
func HashData(kh KeccakState, data []byte) (h libcommon.Hash) {
kh.Reset()
//nolint:errcheck
kh.Write(data)
//nolint:errcheck
kh.Read(h[:])
return h
}
// Keccak256 calculates and returns the Keccak256 hash of the input data.
func Keccak256(data ...[]byte) []byte {
b := make([]byte, 32)
d := NewKeccakState()
for _, b := range data {
d.Write(b)
}
d.Read(b) //nolint:errcheck
cryptopool.ReturnToPoolKeccak256(d)
return b
}
// Keccak256Hash calculates and returns the Keccak256 hash of the input data,
// converting it to an internal Hash data structure.
func Keccak256Hash(data ...[]byte) (h libcommon.Hash) {
d := NewKeccakState()
for _, b := range data {
d.Write(b)
}
d.Read(h[:]) //nolint:errcheck
cryptopool.ReturnToPoolKeccak256(d)
return h
}
// Keccak512 calculates and returns the Keccak512 hash of the input data.
func Keccak512(data ...[]byte) []byte {
d := sha3.NewLegacyKeccak512()
for _, b := range data {
d.Write(b)
}
return d.Sum(nil)
}
// CreateAddress creates an ethereum address given the bytes and the nonce
// DESCRIBED: docs/programmers_guide/guide.md#address---identifier-of-an-account
func CreateAddress(b libcommon.Address, nonce uint64) libcommon.Address {
data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
return libcommon.BytesToAddress(Keccak256(data)[12:])
}
// CreateAddress2 creates an ethereum address given the address bytes, initial
// contract code hash and a salt.
// DESCRIBED: docs/programmers_guide/guide.md#address---identifier-of-an-account
func CreateAddress2(b libcommon.Address, salt [32]byte, inithash []byte) libcommon.Address {
return libcommon.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
}
// ToECDSA creates a private key with the given D value.
func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
return toECDSA(d, true)
}
// ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
// never be used unless you are sure the input is valid and want to avoid hitting
// errors due to bad origin encoding (0 prefixes cut off).
func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
priv, _ := toECDSA(d, false)
return priv
}
// toECDSA creates a private key with the given D value. The strict parameter
// controls whether the key's length should be enforced at the curve size or
// it can also accept legacy encodings (0 prefixes).
func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
priv := new(ecdsa.PrivateKey)
priv.PublicKey.Curve = S256()
if strict && 8*len(d) != priv.Params().BitSize {
return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
}
priv.D = new(big.Int).SetBytes(d)
// The priv.D must < N
if priv.D.Cmp(secp256k1NBig) >= 0 {
return nil, fmt.Errorf("invalid private key, >=N")
}
// The priv.D must not be zero or negative.
if priv.D.Sign() <= 0 {
return nil, fmt.Errorf("invalid private key, zero or negative")
}
priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
if priv.PublicKey.X == nil {
return nil, errors.New("invalid private key")
}
return priv, nil
}
// FromECDSA exports a private key into a binary dump.
func FromECDSA(priv *ecdsa.PrivateKey) []byte {
if priv == nil {
return nil
}
return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
}
// UnmarshalPubkeyStd parses a public key from the given bytes in the standard "uncompressed" format.
// The input slice must be 65 bytes long and have this format: [4, X..., Y...]
// See MarshalPubkeyStd.
func UnmarshalPubkeyStd(pub []byte) (*ecdsa.PublicKey, error) {
x, y := elliptic.Unmarshal(S256(), pub)
if x == nil {
return nil, errInvalidPubkey
}
return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
}
// MarshalPubkeyStd converts a public key into the standard "uncompressed" format.
// It returns a 65 bytes long slice that contains: [4, X..., Y...]
// Returns nil if the given public key is not initialized.
// See UnmarshalPubkeyStd.
func MarshalPubkeyStd(pub *ecdsa.PublicKey) []byte {
if pub == nil || pub.X == nil || pub.Y == nil {
return nil
}
return elliptic.Marshal(S256(), pub.X, pub.Y)
}
// UnmarshalPubkey parses a public key from the given bytes in the 64 bytes "uncompressed" format.
// The input slice must be 64 bytes long and have this format: [X..., Y...]
// See MarshalPubkey.
func UnmarshalPubkey(keyBytes []byte) (*ecdsa.PublicKey, error) {
keyBytes = append([]byte{0x4}, keyBytes...)
return UnmarshalPubkeyStd(keyBytes)
}
// MarshalPubkey converts a public key into a 64 bytes "uncompressed" format.
// It returns a 64 bytes long slice that contains: [X..., Y...]
// In the standard 65 bytes format the first byte is always constant (equal to 4),
// so it can be cut off and trivially recovered later.
// Returns nil if the given public key is not initialized.
// See UnmarshalPubkey.
func MarshalPubkey(pubkey *ecdsa.PublicKey) []byte {
keyBytes := MarshalPubkeyStd(pubkey)
if keyBytes == nil {
return nil
}
return keyBytes[1:]
}
// HexToECDSA parses a secp256k1 private key.
func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
b, err := hex.DecodeString(hexkey)
if byteErr, ok := err.(hex.InvalidByteError); ok {
return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr))
} else if err != nil {
return nil, errors.New("invalid hex data for private key")
}
return ToECDSA(b)
}
// LoadECDSA loads a secp256k1 private key from the given file.
func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
fd, err := os.Open(file)
if err != nil {
return nil, err
}
defer fd.Close()
r := bufio.NewReader(fd)
buf := make([]byte, 64)
n, err := readASCII(buf, r)
if err != nil {
return nil, err
} else if n != len(buf) {
return nil, fmt.Errorf("key file too short, want 64 hex characters")
}
if err := checkKeyFileEnd(r); err != nil {
return nil, err
}
return HexToECDSA(string(buf))
}
// readASCII reads into 'buf', stopping when the buffer is full or
// when a non-printable control character is encountered.
func readASCII(buf []byte, r *bufio.Reader) (n int, err error) {
for ; n < len(buf); n++ {
buf[n], err = r.ReadByte()
switch {
case errors.Is(err, io.EOF) || buf[n] < '!':
return n, nil
case err != nil:
return n, err
}
}
return n, nil
}
// checkKeyFileEnd skips over additional newlines at the end of a key file.
func checkKeyFileEnd(r *bufio.Reader) error {
for i := 0; ; i++ {
b, err := r.ReadByte()
switch {
case errors.Is(err, io.EOF):
return nil
case err != nil:
return err
case b != '\n' && b != '\r':
return fmt.Errorf("invalid character %q at end of key file", b)
case i >= 2:
return errors.New("key file too long, want 64 hex characters")
}
}
}
// SaveECDSA saves a secp256k1 private key to the given file with
// restrictive permissions. The key data is saved hex-encoded.
func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
k := hex.EncodeToString(FromECDSA(key))
return os.WriteFile(file, []byte(k), 0600)
}
// GenerateKey generates a new private key.
func GenerateKey() (*ecdsa.PrivateKey, error) {
return ecdsa.GenerateKey(S256(), rand.Reader)
}
// ValidateSignatureValues verifies whether the signature values are valid with
// the given chain rules. The v value is assumed to be either 0 or 1.
func ValidateSignatureValues(v byte, r, s *uint256.Int, homestead bool) bool {
if r.IsZero() || s.IsZero() {
return false
}
// reject upper range of s values (ECDSA malleability)
// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
if homestead && s.Gt(secp256k1halfN) {
return false
}
// Frontier: allow s to be in full N range
return r.Lt(secp256k1N) && s.Lt(secp256k1N) && (v == 0 || v == 1)
}
// DESCRIBED: docs/programmers_guide/guide.md#address---identifier-of-an-account
func PubkeyToAddress(p ecdsa.PublicKey) libcommon.Address {
pubBytes := MarshalPubkey(&p)
return libcommon.BytesToAddress(Keccak256(pubBytes)[12:])
}
func zeroBytes(bytes []byte) {
for i := range bytes {
bytes[i] = 0
}
}