forked from Endermanch/XPKeygen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.cpp
370 lines (272 loc) · 9.68 KB
/
server.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
//
// Created by Andrew on 09/04/2023.
//
#include "header.h"
const char pSv[] = "C9AE7AED19F6A7E100AADE98134111AD8118E59B8264734327940064BC675A0C682E19C89695FBFA3A4653E47D47FD7592258C7E3C3C61BBEA07FE5A7E842379";
const long aSv = 1;
const long bSv = 0;
// Base point G (Generator)
const char genXSv[] = "85ACEC9F9F9B456A78E43C3637DC88D21F977A9EC15E5225BD5060CE5B892F24FEDEE574BF5801F06BC232EEF2161074496613698D88FAC4B397CE3B475406A7";
const char genYSv[] = "66B7D1983F5D4FE43E8B4F1E28685DE0E22BBE6576A1A6B86C67533BF72FD3D082DBA281A556A16E593DB522942C8DD7120BA50C9413DF944E7258BDDF30B3C4";
// Inverse of the public key
const char pubXSv[] = "90BF6BD980C536A8DB93B52AA9AEBA640BABF1D31BEC7AA345BB7510194A9B07379F552DA7B4A3EF81A9B87E0B85B5118E1E20A098641EE4CCF2045558C98C0E";
const char pubYSv[] = "6B87D1E658D03868362945CDD582E2CF33EE4BA06369E0EFE9E4851F6DCBEC7F15081E250D171EA0CC4CB06435BCFCFEA8F438C9766743A06CBD06E7EFB4C3AE";
// Order of G <- from MSKey 4-in-1
const char genOrderSv[] = "4CC5C56529F0237D";
// Computed private key
const char privateKeySv[] = "2606120F59C05118";
void unpackServer(ul32 *osFamily, ul32 *hash, ul32 *sig, ul32 *prefix, ul32 *raw) {
// We're assuming that the quantity of information within the product key is at most 114 bits.
// log2(24^25) = 114.
// OS Family = Bits [0..10] -> 11 bits
osFamily[0] = raw[0] & 0x7ff;
// Hash = Bits [11..41] -> 31 bits
hash[0] = ((raw[0] >> 11) | (raw[1] << 21)) & 0x7fffffff;
// Signature = Bits [42..103] -> 62 bits
sig[0] = (raw[1] >> 10) | (raw[2] << 22);
sig[1] = ((raw[2] >> 10) | (raw[3] << 22)) & 0x3fffffff;
// Prefix = Bits [104..113] -> 10 bits
prefix[0] = (raw[3] >> 8) & 0x3ff;
}
void packServer(ul32 *raw, ul32 *osFamily, ul32 *hash, ul32 *sig, ul32 *prefix) {
raw[0] = osFamily[0] | (hash[0] << 11);
raw[1] = (hash[0] >> 21) | (sig[0] << 10);
raw[2] = (sig[0] >> 22) | (sig[1] << 10);
raw[3] = (sig[1] >> 22) | (prefix[0] << 8);
}
bool verifyServerKey(EC_GROUP *eCurve, EC_POINT *generator, EC_POINT *publicKey, char *cdKey) {
BN_CTX *context = BN_CTX_new();
// Convert Base24 CD-key to bytecode.
ul32 osFamily, hash, sig[2], prefix;
ul32 bKey[4]{};
unbase24(bKey, cdKey);
// Extract segments from the bytecode and reverse the signature.
unpackServer(&osFamily, &hash, sig, &prefix, bKey);
endiannessConvert((byte *)sig, 8);
byte t[FIELD_BYTES_2003]{}, md[SHA_DIGEST_LENGTH]{};
ul32 checkHash, newHash[2]{};
SHA_CTX hContext;
// H = SHA-1(5D || OS Family || Hash || Prefix || 00 00)
SHA1_Init(&hContext);
t[0] = 0x5D;
t[1] = (osFamily & 0xff);
t[2] = (osFamily & 0xff00) >> 8;
t[3] = (hash & 0xff);
t[4] = (hash & 0xff00) >> 8;
t[5] = (hash & 0xff0000) >> 16;
t[6] = (hash & 0xff000000) >> 24;
t[7] = (prefix & 0xff);
t[8] = (prefix & 0xff00) >> 8;
t[9] = 0x00;
t[10] = 0x00;
SHA1_Update(&hContext, t, 11);
SHA1_Final(md, &hContext);
// First word.
newHash[0] = md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24);
// Second word, right shift 2 bits.
newHash[1] = (md[4] | (md[5] << 8) | (md[6] << 16) | (md[7] << 24)) >> 2;
newHash[1] &= 0x3FFFFFFF;
endiannessConvert((byte *)newHash, 8);
BIGNUM *x = BN_new();
BIGNUM *y = BN_new();
BIGNUM *s = BN_bin2bn((byte *)sig, 8, nullptr);
BIGNUM *e = BN_bin2bn((byte *)newHash, 8, nullptr);
EC_POINT *u = EC_POINT_new(eCurve);
EC_POINT *v = EC_POINT_new(eCurve);
// EC_POINT_mul calculates r = generator * n + q * m.
// v = s * (s * generator + e * publicKey)
// u = generator * s
EC_POINT_mul(eCurve, u, nullptr, generator, s, context);
// v = publicKey * e
EC_POINT_mul(eCurve, v, nullptr, publicKey, e, context);
// v += u
EC_POINT_add(eCurve, v, u, v, context);
// v *= s
EC_POINT_mul(eCurve, v, nullptr, v, s, context);
// EC_POINT_get_affine_coordinates() sets x and y, either of which may be nullptr, to the corresponding coordinates of p.
// x = v.x; y = v.y;
EC_POINT_get_affine_coordinates_GFp(eCurve, v, x, y, context);
// Hash = First31(SHA-1(79 || OS Family || v.x || v.y))
SHA1_Init(&hContext);
t[0] = 0x79;
t[1] = (osFamily & 0xff);
t[2] = (osFamily & 0xff00) >> 8;
// Hash chunk of data.
SHA1_Update(&hContext, t, 3);
// Empty buffer, place v.y in little-endian.
memset(t, 0, FIELD_BYTES_2003);
BN_bn2bin(x, t);
endiannessConvert(t, FIELD_BYTES_2003);
// Hash chunk of data.
SHA1_Update(&hContext, t, FIELD_BYTES_2003);
// Empty buffer, place v.y in little-endian.
memset(t, 0, FIELD_BYTES_2003);
BN_bn2bin(y, t);
endiannessConvert(t, FIELD_BYTES_2003);
// Hash chunk of data.
SHA1_Update(&hContext, t, FIELD_BYTES_2003);
// Store the final message from hContext in md.
SHA1_Final(md, &hContext);
// Hash = First31(SHA-1(79 || OS Family || v.x || v.y))
checkHash = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) & 0x7fffffff;
BN_free(s);
BN_free(e);
BN_free(x);
BN_free(y);
BN_CTX_free(context);
EC_POINT_free(v);
EC_POINT_free(u);
// If we managed to generate a key with the same hash, the key is correct.
return checkHash == hash;
}
void generateServerKey(char *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIGNUM *order, BIGNUM *privateKey, ul32 *osFamily, ul32 *prefix) {
EC_POINT *r = EC_POINT_new(eCurve);
BN_CTX *ctx = BN_CTX_new();
ul32 bKey[4]{},
bSig[2]{};
do {
BIGNUM *c = BN_new();
BIGNUM *s = BN_new();
BIGNUM *x = BN_new();
BIGNUM *y = BN_new();
BIGNUM *b = BN_new();
ul32 hash = 0, h[2]{};
memset(bKey, 0, 4);
memset(bSig, 0, 2);
// Generate a random number c consisting of 512 bits without any constraints.
BN_rand(c, FIELD_BITS_2003, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY);
// r = generator * c
EC_POINT_mul(eCurve, r, nullptr, generator, c, ctx);
// x = r.x; y = r.y;
EC_POINT_get_affine_coordinates(eCurve, r, x, y, ctx);
SHA_CTX hContext;
byte md[SHA_DIGEST_LENGTH]{}, buf[FIELD_BYTES_2003]{};
// Hash = SHA-1(79 || OS Family || r.x || r.y)
SHA1_Init(&hContext);
buf[0] = 0x79;
buf[1] = (*osFamily & 0xff);
buf[2] = (*osFamily & 0xff00) >> 8;
SHA1_Update(&hContext, buf, 3);
memset(buf, 0, FIELD_BYTES_2003);
BN_bn2bin(x, buf);
endiannessConvert((byte *) buf, FIELD_BYTES_2003);
SHA1_Update(&hContext, buf, FIELD_BYTES_2003);
memset(buf, 0, FIELD_BYTES_2003);
BN_bn2bin(y, buf);
endiannessConvert((byte *) buf, FIELD_BYTES_2003);
SHA1_Update(&hContext, buf, FIELD_BYTES_2003);
SHA1_Final(md, &hContext);
hash = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) & 0x7fffffff;
// H = SHA-1(5D || OS Family || Hash || Prefix || 00 00)
SHA1_Init(&hContext);
buf[0] = 0x5D;
buf[1] = (*osFamily & 0xff);
buf[2] = (*osFamily & 0xff00) >> 8;
buf[3] = (hash & 0xff);
buf[4] = (hash & 0xff00) >> 8;
buf[5] = (hash & 0xff0000) >> 16;
buf[6] = (hash & 0xff000000) >> 24;
buf[7] = prefix[0] & 0xff;
buf[8] = (prefix[0] & 0xff00) >> 8;
buf[9] = 0x00;
buf[10] = 0x00;
// Input length is 11 bytes.
SHA1_Update(&hContext, buf, 11);
SHA1_Final(md, &hContext);
// First word.
h[0] = md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24);
// Second word, right shift 2 bits.
h[1] = (md[4] | (md[5] << 8) | (md[6] << 16) | (md[7] << 24)) >> 2;
h[1] &= 0x3FFFFFFF;
endiannessConvert((byte *)h, 8);
BN_bin2bn((byte *)h, 8, b);
/*
* Signature * (Signature * G + H * K) = rG (mod p)
* ↓ K = kG ↓
*
* Signature * (Signature * G + H * k * G) = rG (mod p)
* Signature^2 * G + Signature * HkG = rG (mod p)
* G(Signature^2 + Signature * HkG) = G (mod p) * r
* ↓ G^(-1)(G (mod p)) = (mod n), n = order of G ↓
*
* Signature^2 + Hk * Signature = r (mod n)
* Signature = -(b +- sqrt(D)) / 2a → Signature = (-Hk +- sqrt((Hk)^2 + 4r)) / 2
*
* S = (-Hk +- sqrt((Hk)^2 + 4r)) (mod n) / 2
*
* S = s
* H = b
* k = privateKey
* n = order
* r = c
*
* s = ( ( -b * privateKey +- sqrt( (b * privateKey)^2 + 4c ) ) / 2 ) % order
*/
// b = (b * privateKey) % order
BN_mod_mul(b, b, privateKey, order, ctx);
// s = b
BN_copy(s, b);
// s = (s % order)^2
BN_mod_sqr(s, s, order, ctx);
// c <<= 2 (c = 4c)
BN_lshift(c, c, 2);
// s = s + c
BN_add(s, s, c);
// s^2 = s % order (order must be prime)
BN_mod_sqrt(s, s, order, ctx);
// s = s - b
BN_mod_sub(s, s, b, order, ctx);
// if s is odd, s = s + order
if (BN_is_odd(s)) {
BN_add(s, s, order);
}
// s >>= 1 (s = s / 2)
BN_rshift1(s, s);
// Convert s from BigNum back to bytecode and reverse the endianness.
BN_bn2bin(s, (byte *)bSig);
endiannessConvert((byte *)bSig, BN_num_bytes(s));
// Pack product key.
packServer(bKey, osFamily, &hash, bSig, prefix);
BN_free(c);
BN_free(s);
BN_free(x);
BN_free(y);
BN_free(b);
} while (bSig[1] >= 0x40000000);
base24(pKey, bKey);
BN_CTX_free(ctx);
EC_POINT_free(r);
}
bool keyServer(char *pKey) {
// We cannot produce a valid key without knowing the private key k. The reason for this is that
// we need the result of the function K(x; y) = kG(x; y).
BIGNUM *privateKey = BN_new();
// We can, however, validate any given key using the available public key: {p, a, b, G, K}.
// genOrder the order of the generator G, a value we have to reverse -> Schoof's Algorithm.
BIGNUM *genOrder = BN_new();
/* Computed data */
BN_hex2bn(&genOrder, genOrderSv);
BN_hex2bn(&privateKey, privateKeySv);
EC_POINT *genPoint, *pubPoint;
EC_GROUP *eCurve = initializeEllipticCurve(
pSv,
aSv,
bSv,
genXSv,
genYSv,
pubXSv,
pubYSv,
genOrder,
privateKey,
&genPoint,
&pubPoint
);
ul32 osFamily = 1280, prefix = 0;
// Generate a 30-bit prefix.
RAND_bytes((byte *)&prefix, 4);
prefix &= 0x3FF;
do {
generateServerKey(pKey, eCurve, genPoint, genOrder, privateKey, &osFamily, &prefix);
} while (!verifyServerKey(eCurve, genPoint, pubPoint, pKey));
return true;
}