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Abstract. This paper describes the service robot Rocky from Team
ACRV for the 2019 RoboCup@Home Challenge. This platform aims to
demonstrate current Centre research in the context of mobile manip-
ulation and human interaction. The system plans to use a behaviour
tree style agent for autonomous control and leverage our existing exper-
tise from the Amazon Robotics Challenge and other research to build
and demonstrate real-world mobile manipulation and human interaction
abilities.

1 Introduction

Team Australian Centre for Robotic Vision (ACRV) was the winner of the Ama-
zon Robotics Challenge in 2017 and aims to participate in the Sydney 2019
RoboCup@Home Challenge. The team is based at the Queensland University of
Technology and is a collaborative effort from university nodes within the Cen-
tre. The team is made up of undergraduate students, PhD students, professional
staff, and research staff. The team leverages the related research experience of
its members, past participation in international competitions, and rapid proto-
typing abilities to enable iterative, innovative and low-cost solutions.

Our solution and platform uses a number of software packages developed as
part of the Centre’s research including our grasping network[1], indoor navigation
improvements to ROS move-base used on Softbank’s pepper[2], and experience
from the Amazon Robotics Challenge[3]. All other hardware, including our cur-
rent platform, and software architecture has been created after the expression
of interest put forward on January 20 2019. This paper describes the overall
system architecture, manipulation capabilities, mobile navigation and mapping
systems, offboard image recognition software, open source software and other
contributions.
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2 Team ACRV@Home

Fig. 1. Rocky carrying a bag while completing the Clean Up challenge task

With significant expertise in mobile navigation, SLAM, object detection, and
manipulation, the team is participating in the RoboCup@Home competition to
further their research in the domain of mobile manipulation. The team plans
to use this experience to enhance the knowledge base of both incoming and
continuing PhD students with support from engineers and senior researchers.
We plan to release the competition software stack as open source software upon
the completion of the competition and to attend future competitions in 2020
and beyond.

2.1 Focus of research

The Centre has significant manipulation experience from winning the 2017 Ama-
zon Robotics Challenge and ongoing research output on new grasping techniques.
These techniques however have been limited to applications in the tabletop ma-
nipulation space. The key goal of the team is to transition the existing research
from the fixed position tabletop space to a real world mobile manipulation ca-
pability.

3 Overall System Design

The software architecture of the system, shown in Figure 2, splits the compo-
nents into three overarching groups: the world model, robot actions, and cloud
services. The robot agent sits at the top of the software stack, using a behaviour
tree to guide the robot through the completion of complex tasks. The behaviour
tree interacts with the world state and robot through service requests and robot
actions. Robot actions also leverage a number of off board services, provided



through CloudVis, to facilitate algorithms with computational requirements be-
yond what is possible to house on a mobile robot.

Fig. 2. Current software architecture design for Rocky

The current robotic hardware has been assembled from existing resources.
Figure 1 shows our current platform, fondly known as Rocky. It has a flexible
and modular design allowing for rapid changes to manipulator position, addi-
tional sensor placements, and structural reconfiguration. Due to the benefits of
a flexible and modular design, there is expected to be continued iteration on the
look and abilities of this platform during the months leading up the competition.

3.1 Hardware

Rocky is built upon a legacy Mobile Robotics PatrolBot base which has been
modified to remove the onboard computer, add additional battery capacity, and
mounting points for customisable structures. The internal structure of Rocky is
shown in Figure 3. The robot is equipped with an onboard Mini-ITX desktop
computer with an Intel i5 8600 @ 3.1GHz and 8GB of Ram, running Ubuntu
16.04 and ROS Kinetic.



Fig. 3. Rocky without covers shows the construction of a 4040 extrusion which
allows easy modifications of the structure, sensor placement, and arm orientation
and location.

For manipulation, the robot is equipped with a 6-DOF robotic arm (Kinova
Mico). The end effector is currently the stock Kinova fingers, however investiga-
tions into re-using design elements from the Amazon Robotics Challenge [4] are
ongoing.

The current sensor suite consists of a SICK laser scanner for obstacle avoid-
ance, and two Intel RealSense D435 cameras mounted forward facing and as a
depth in hand camera.

3.2 Behaviour Tree Agent

Autonomous operation of our platform is achieved through the use of a custom
built agent that utilises behaviour trees. Behaviour trees are a representation
format for generating complex behaviours in autonomous agents, such as video
game characters or robotic agents [5]. The decision to employ behaviour trees was
driven by both their modular nature and their expressive power, which has been
shown to be equivalent to that of finite-state machines. An example behaviour
tree can be seen in Figure 4.

Formally, a behaviour tree is a rooted directed tree structure consisting of at
least 1 or more nodes. These nodes can be classed into two groups: composite
nodes – which contain one or more child nodes, and leaf nodes – which represent
conditions and actions that are executable by the agent. At each time step, the
agent sends a tick to the root node of the tree, which is then filtered through
the tree based on the policy of each of the nodes within the tree. The tree then
returns the current execution status of the tree to the agent, where the status
is one of the following: success, which indicates the successful completion of the
tree; failure, which indicates a non-recoverable failure at some point within the
tree; and running, which is returned while the tree has yet to succeed or fail.
How a node handles a tick, as well as how it hands return values back up the
tree, is dependent on its type.



Fig. 4. Example behaviour tree model for Clean Up task.

To look at how a tick is handled by a composite node, we will look at each of
the two basic forms of composite nodes: the Sequence node (represented as an
arrow), and Selector node (represented as a question mark). When a sequence
node receives a tick from its parent, it will respond by ticking each of its children
in order until either it has exhausted all of its children (in which case it will
return success) or a child returns failure or running (in which it will return
either failure or running respectively). In contrast a selector node will tick each
child successively until a child returns either success or running, at which case it
will return success or running respectively, or it will return failure when it has
exhausted its set of children. As a result of these dynamics, selector nodes can be
used in a fashion similar to an if-else branch while sequences provide directional
execution of actions.

Leaf nodes in a tree represent either conditions or actions executable by the
agent. Unlike composite nodes, leaf nodes can have no children. Condition nodes
return either success or failure depending on whether the particular condition
is true or false, and should never return running. Action nodes, which represent
actionable behaviours of the robot such as grasping or moving, return success
if the action completes successfully, failure if the action failed, or running if the
action is currently in progress.

In addition to composite nodes and leaf nodes, some behaviour tree for-
malisms also allow for additional nodes known as decorators. Decorators differ
from composite nodes in that they may only contain a single child, but like
composite nodes cannot be used as leaf nodes within a tree. Decorator nodes
operate by modifying the return value of their children, and can be used for



purposes such as inverting the success/failure return status of its child, or for
more complex structures such as “for” loops.

3.3 Manipulation

Our grasping approach is based on Centre research for developing a Genera-
tive Grasping Convolutional Neural Network (GG-CNN). The GG-CNN is a
lightweight, fully-convolutional network which predicts the quality and pose of
antipodal grasps at every pixel in an input depth image. The lightweight and
single-pass generative nature of GG-CNN allows for fast execution and closed-
loop control, enabling accurate grasping in dynamic environments where ob-
jects are moved during the grasp attempt. Detailed explanation of this work is
available in [1], and further extended to a multi view grasping approach in [3].
Software for training and a pretrained network implementation are available at
GitHub1 along with wrappers for use on the Kinova Mico2.

3.4 Object Classification

Significant work was done in the development of a pipeline for rapid learning of
new items for the Amazon Robotics Challenge. Details of the pipeline, approach
and implementation can be found in [6]. We intend to use a modified version of
this pipeline for detecting objects in competition.

3.5 Navigation and Mapping

Our navigation approach is based on the Standard ROS G-Mapping and obsta-
cle avoidance implementations. We also incorporated some of the lessons and
improvements used to enable Softbank Pepper to perform tours of our lab en-
vironment. Details of the modifications can be found in [2]. The QUT lab also
has a long history of mobile navigation research, including: long-term naviga-
tion [7], using multiple map hypotheses for non-stationary environments [8], and
applying vision to topometric maps for autonomous navigation [9].

Both the Australian Centre for Robotic Vision, and team members from
within QUT, have independently developed research exploring how symbolic
and semantic information can be used to enhance the navigation capabilities of
mobile robots. From this research two approaches have emerged for the challeng-
ing problem of reconciling the informative utility of spatial symbols with the real
world grounding provided by sensorimotor observations.

The first approach, Semantic Mapping and Semantic SLAM, looks at how a
synergistic relationship can be constructed between the semantics in object de-
tection and the metricity of traditional SLAM techniques. The benefits of com-
bining object recognition with SLAM are bidirectional; the semantics of object
labels provides a richer SLAM representation of the surrounding environment,

1 https://github.com/dougsm/ggcnn
2 https://github.com/dougsm/ggcnn_kinova_grasping

https://github.com/dougsm/ggcnn
https://github.com/dougsm/ggcnn_kinova_grasping


while the metric information provided by traditional SLAM enhances the spa-
tial quality of object recognitions. The capabilities produced from this research
– object-oriented SLAM [10], semantic mapping [11], and place categorisation
[12] – will help the team to successfully use the metricity of the challenge envi-
ronments to enhance object recognition capabilities, and the semantics in object
recognition to produce rich spatial models when completing tasks.

The second approach to using symbols in navigation goes a step further, and
looks at how a robot can use the symbolic spatial information communicated by
human navigation cues to purposefully navigate previously unseen environments.
Navigation cues can include labels, signs, maps, planners, spoken directions, and
navigation gestures. The research uses a novel tool called the abstract map [13]
to construct a symbolic representation of space, which can be tethered to the
sensorimotor spatial model developed by a robot. The deformable nature of the
links and tethers in the abstract map allows the robot to convert a navigation
task defined solely with symbols into the real world navigation actions required
to complete the task. The abstract map is available to help the team deal with
tasks which may require the challenge of purposefully operating in unseen envi-
ronments.

3.6 Speech Recognition

We are currently testing the PicoVoice3 Porcupine and Rhino wake word and
speech-to-text software available for non-commercial use. This provides a deep
learning speech recognition approach with minimal hardware requirements that
is capable of running onboard. Additional investigations into cloud based soft-
ware are ongoing, but due to internet connectivity requirements and issues with
connectivity an onboard or local network solution is preferred.

3.7 Offboard Image Processing

The Centre has developed software to allow low latency offboard image process-
ing known as CloudVis. A demonstration of this software can be seen via its
web interface4. This interface abstracts some of the complexities of the ROS
publisher-subscriber structure; simplifies the use of algorithms through web,
Python, MATLAB, C++, and other interfaces; and has high throughput with
minimal overhead.

4 Conclusion

In this paper we have given an overview of the software and hardware to be
used by Team ACRV at the RoboCup@Home challenge. We have presented our
rapidly constructed robot, custom software packages, and overall architecture

3 https://github.com/Picovoice
4 http://cloudvis.roboticvision.org



that we will employ in tackling the challenge. We hope to build on our successes
in previous competitions, and mature the mobile manipulation research within
the Australian Centre of Robotic Vision. In the minimal time that the team has
been preparing we have made significant progress towards what we believe is a
competitive system.
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Name of team: Team Australian Centre of Robotic Vision
Members: Steve Martin, Ben Talbot, Gavin Suddrey, Rohan Smith, Feras Day-
oub, Niko Sünderhauf
Contact Information: steven.martin@qut.edu.au
Website: https://roboticvision.atlassian.net/wiki/spaces/Cup/overview

Hardware:

– MobileRobot PatrolBot base
– Kinova Mico
– Onboard computer Intel i5 8600, 8gb Ram, Ubuntu 16.04
– Sick Laser Scanner
– 2 x Intel Realsense D435

External Hardware:

– 3 x Desktop Workstations

Software:

– ROS
– OpenCV
– PCL
– MoveIt
– Tensorflow
– Picovoice Porcupine
– Picovoice Rhino
– Matlab

https://roboticvision.atlassian.net/wiki/spaces/Cup/overview
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