
The b-it-bots@Home 2019

Team Description Paper

Alex Mitrevski Argentina Ortega Sainz Patrick Nagel
Maximilian Schöbel Minh Nguyen Roberto Cai Wu

Rohan Haseloff Paul G. Plöger Gerhard K. Kraetzschmar

October 28, 2018

Abstract. This paper presents the b-it-bots@Home team and one of its
mobile service robots called Lucy – a Human Support Robot manufac-
tured by Toyota. We present an overview of our robot control architecture
and the robot’s capabilities, namely the added functionalities from var-
ious research and development projects carried out by the Autonomous
Systems group at Hochschule Bonn-Rhein-Sieg.

1 Introduction

The b-it-bots@Home team1 was established in 2007 and functions as part of
the international Autonomous Systems master’s program at Hochschule Bonn-
Rhein-Sieg (HBRS)2. Our team consists of bachelor’s, master’s, and PhD stu-
dents that are advised by three tenured professors, such that we have a long
history of participation at RoboCup@Home competitions.

Our initial robot Johnny, a VolksBot platform, was used by the team from
2008 to 2010. Since 2011, the b-it-bots@Home team has been working with Jenny,
a Care-O-Bot 3, and has successfully participated in multiple competitions, in-
cluding RoboCup, German Open, and RoCKIn. In February 2018, the team
added Lucy, a Toyota HSR, to its available platforms, and as of 2019 is partici-
pating in the RoboCup@Home Domestic Standard Platform League (DSPL).

While participation at competitions has always been an integral part of our
activites, we foster a research-oriented culture above all, such that we have sev-
eral ongoing PhD and master’s theses projects that are very closely related to
the team. In parallel, one of our goals is to deploy service robots to real-life
applications. Since our research interests are highly linked to our experiences in
the field, our software both contributes and benefits from the ongoing research
projects taking place at our university.

1 https://mas-group.inf.h-brs.de/?page_id=622
2 http://www.h-brs.de

1



2

The rest of this paper presents some of the work carried out by current and
previous team members, such that we focus on some of our main research inter-
ests: execution monitoring, fault detection and diagnosis, robust manipulation,
real-time and adaptive perception, as well as knowledge-based reasoning.

2 Robust Manipulation

2.1 Imitation Learning

Our robots - Lucy included - have generally used MoveIt!3 for planning arm tra-
jectories, but this has often lead to unpredictable and suboptimal behaviour in
practical scenarios, such as picking and placing objects. In order to increase the
predictability of our robots during manipulation and allow more optimal trajec-
tories to be performed, we are slowly moving towards a manipulation framework
based on learning by demonstration. In one recent project, we investigated dy-
namic motion primitives [1] as a generalisable representation of robot motion
trajectories, such that we performed an experimental evaluation of dynamic mo-
tion primitives and developed an imitation-based framework based on which
Cartesian trajectories are acquired by tracking a marker array; imitation is then
achieved by performing synchronised arm and base motions4. Our manipulation
pipeline still makes use of MoveIt!, but only for simple motions and as a backup
for the motion primitives.

2.2 Grasp Representation and Learning

In order to improve the grasp robustness of our robot, one major research inter-
est of the team concerns learning-based grasp synthesis methods. In this context,
one of our recent projects looked into four aspects most relevant to data genera-
tion for training supervised grasp evaluation models, namely: (i) feature extrac-
tion from perceptual data, (ii) object-grasp representation, (iii) grasp evaluation
methods, and (iv) data generation techniques. Additionally, we have integrated
a complete object grasping pipeline, starting from object detection to grasp pose
detection and grasp execution.

For finding a grasp pose for detected objects, a simple pose estimation algo-
rithm and the Grasp Quality CNN (GQCNN) model [2] are integrated (Figure
1). The first method directly uses the object points extracted from an RGB-D
cloud to calculate the grasping position; the grasp approach is then chosen to be
the positive x-axis in the coordinate frame of the robot base. On the other hand,
GQCNN trains a CNN model on the Dex-Net 2.0 synthetic grasp dataset to
predict the probability of success of a grasp candidate using a pair of depth and
RGB object images. Figure 2 shows a sample grasp detected using GQCNN5.

3 moveit.ros.org
4 A video showing some of the preliminary results of this work can be found at https:
//www.youtube.com/watch?v=jEtlm96KAbA.

5 A video of some grasp experiments performed using the integrated grasping pipeline
can be found at https://www.youtube.com/watch?v=OC7vttt4-Jo. These experi-
ments also show the integration of the previously described imitation framework.



3

(a) Object pose estimation (b) GQCNN planner

Fig. 1: Integrated grasp planning methods

Fig. 2: A successful GQCNN grasp plan. Arrow and number on the right indicate grasp
pose and grasp quality returned from the GQCNN planner

3 Object Detection and Scene Understanding

The architecture of our object detection pipeline provides a standard and ex-
tensible way of integrating new models and approaches to our code base: new
implementations only need to extend the ImageDetector base class for perform-
ing detection. Our current instantiation of the pipeline first extracts RGB data
from an RGB-D point cloud; a Single-shot Multi-box Detector model (SSD) [3],
trained on the COCO dataset6, is then used to detect objects in the image. Inde-
pendently, a RANSAC algorithm fits a plane model using 3D points downsam-
pled from the RGB-D cloud to find horizontal surfaces (such as tables or shelves)
associated with the detected objects. The detection result returned from the SSD
model is then used to extract object points from the original RGB-D cloud and
estimate the objects’ 3D positions. We also provide a Boost Python wrapper

6 http://cocodataset.org/



4

to allow executing point cloud processing functionalities from Python, since the
original implementation uses the C++-based Point Cloud Library (PCL)7.

4 Planning, Reasoning, and Operation Monitoring

4.1 Task Planning

Robots operating in dynamic environments have to be designed to be robust
and flexible; we are thus working towards a flexible plan-based architecture for
high-level reasoning and recovery. In a first step, we have integrated ROSPlan8

as a planning framework that covers the whole lifecycle of a task, starting from
problem generation, task planning, plan dispatching, and plan monitoring.

In order to extend the plan generation with expert knowledge, we are also
working towards integrating the hierarchical task network planner JSHOP29

into ROSPlan. The motivation for this comes from the work by Awaad et al.
[4], as well as the task planning, execution, and monitoring system developed by
Shpieva and Awaad [5], where JSHOP2 has been used successfully.

4.2 High-Level Knowledge Representation and Reasoning

In order to perform purposeful tasks, domestic robots need to be able to un-
derstand their environment and reason about it. While several aspects about
the world, such as the locations of objects or people, have to be estimated and
updated dynamically as a robot is operating, it would be suboptimal to let a
robot learn everything about the environment from scratch; instead, it is more
pragmatic to guide the robot’s reasoning process by using an ontology that
represents encyclopedic knowledge about the world (namely known facts about
objects, their properties, and relations between each other). In this respect, we
are working towards an ontology for domestic environments that is motivated
by the KnowRob ontology [6], but represents a stripped-down version of it. Just
as KnowRob, our ontology is written in the OWL Web Ontology Language10,
such that we are working on an RDFLib-based11 interface for interacting with
the encoded knowledge.

4.3 Execution and Component Monitoring

Due to the complexity of domestic environments, such as the high variability of
objects and the presence of other agents, domestic robots are quite failure-prone.
This raises the need for both appropriate recovery strategies during execution as
well as learning mechanisms for improving the execution process, but also means

7 http://docs.pointclouds.org/
8 https://github.com/KCL-Planning/ROSPlan
9 http://www.cs.umd.edu/projects/shop/description.html

10 www.w3.org/TR/owl-ref/
11 https://github.com/RDFLib/rdflib



5

that robots need to be transparent about their actions so that their policies can
be understood more easily. In order to model and express action execution knowl-
edge, we are using an action execution library12 for (i) representing knowledge
about actions, namely their inputs, outputs, and known failure cases and (ii)
logging execution-relevant data. Motivated by the work in [7] and [8], we are
currently using this library for executing placing actions. In addition to that, we
are in the process of adapting the component monitoring framework described in
[9] so that component failures can be detected early enough, which should allow
us to prevent undesired events (e.g. the robot colliding with a table due to a mal-
functioning arm joint) and, if automatic recovery is not possible, communicate
such failures to a human operator.

5 Natural Language Processing and Understanding

For robots in domestic environments, interaction with humans, particularly in a
verbal manner, is an indispensable component. This section provides an overview
of how we are addressing the challenge of understanding humans and responding
to them.

5.1 Speech recognition

For detecting speech from an audio snippet and transforming it into a machine-
readable format, we differentiate between online and offline methods. Online
speech recognition is conducted using Google’s speech recognition API 13, thereby
leveraging the model’s high recognition rates and robustness; however, since we
cannot assume that our robot will always have a stable internet connection, we
have also integrated PocketSphinx14, a speech recognition library developed by
Carnegie Mellon University, for understanding commands even when our robot
is offline. The results of a project that has compared open source speech recogni-
tion toolkits for domestic environments15 point out that the speech recognition
toolkit Kaldi [10] is more suitable for everyday household tasks; we are thus
in the process of switching from PocketSphinx to Kaldi as our primary offline
speech recognition tool.

5.2 Speech matching

Even with a highly accurate speech recognition model, recognised speech might
be faulty or incomplete, which generally means that it needs to be further pro-
cessed by comparing what was recognised with what a robot already knows (such

12 https://github.com/b-it-bots/action-execution
13 https://cloud.google.com/speech-to-text/
14 https://github.com/cmusphinx/pocketsphinx
15 Conducted as part of the RoboLand project: https://www.h-brs.de/de/roboland-

telepraesenz-roboter-im-haeuslichen-lebens-und-pflegearrangement-von-personen-
mit-demenz-im



6

as a database of known questions and commands) and react to that accordingly.
For comparing recognised and known speech, we use the Levenshtein distance,
which is a string comparison metric that measures the difference between two
sentences; if the similarity between the recognised speech and a sentence in a
previously created database is above a certain threshold, the robot would reply
in case of a question or execute a corresponding action in case of a command.

Although the Levenshtein distance provides acceptable practical performance,
we have additionally implemented Double Metaphone, which is an approach for
indexing words by sound, as an additional speech verification method. This al-
lows us to refer to the results of two different methods, thereby increasing the
robustness of the system even if the speech recognition was only partially correct.

5.3 Natural Language Understanting

As part of an ongoing project, we are also investigating natural language pro-
cessing toolkits for use in our robots. The project is still ongoing, but some
preliminary results suggest that SocRob’s NLU ROS package16 is a promising
candidate, so we have started integrating it for further testing.

6 Face and Expression Recognition

We use a real-time vision system17 for performing the tasks of face detection,
gender classification, and emotion classification simultaneously in a single step.
The facial expression recognition system present on our robot can recognise
expressions of joy, surprise, sadness, neutrality, and anger. This component is
also being used by the SocRob team in the RoboCup@Home OPL league18

Our approach consists of creating a Convolutional Neural Network (CNN)
architecture for emotion recognition, with accuracies of 96% on the IMDB gender
dataset and 66% on the FER-2013 emotion dataset.

We have additionally developed a real-time guided back-propagation visualiza-
tion technique that displays the dynamics of the weight changes and evaluates
the learned features.

16 https://github.com/socrob/mbot_natural_language_processing
17 https://github.com/oarriaga/face_classification
18 https://github.com/socrob/face_classification



7

7 Open-Source Contributions

In the last year, we open-sourced most of our code and made it available through
our official GitHub organization19. By making our source code public, we expect
that our contributions can be adopted by the community and we can cooperate
with other teams more easily.

Due to the nature of our contract with Toyota, our HSR-specific code is not
on GitHub, but all of our core robot-independent software can be found there:

– mas domestic robotics: Core robot-independent components for domestic
applications, which are currently used by our Care-O-Bot and Toyota HSR

– mas execution manager: A small library for creating state machines and
managing their execution

– mas common robotics: Robot-independent ROS packages shared with
our b-it-bots@work team

– mas perception: Our robot-independent perception components
– mas navigation: Our robot-independent navigation stack

Our wiki20 documenting our development process and many of our functionalities
is also publicly available.

Our organization has also open-sourced our Care-O-Bot software21 as well
as other open-source repositories to which our current and past members have
been contributing. A few highlights can be found below:

– An implementation of the execution models described by Mitrevski et al.
[8] and an Unreal Engine simulation for reproducing some of the results
presented there22

– The motion detection framework described by Thoduka et al. [11]23

– A ROS-based implementation of the tactile slip detector described by Sanchez
et al. [12]24

8 Conclusions and future work

This paper presented the robot platform of the b-it-bots@Home team and its
capabilities. While the described functionalities have already been integrated on
our platform, integration is a continuous process driven by our research goals,
which are reflected through several ongoning PhD projects, master’s theses, and
funded projects. Our current focus areas go in line with all aspects described
in this paper and include long-term experience acquisition, skill generalisation,
transparent execution, communicating robot intentions, large-scale and multi-
floor mapping, as well as autonomous exploration, all of which are particularly
important in the context of domestic robotics.

19 https://github.com/b-it-bots
20 https://github.com/b-it-bots/wiki
21 https://github.com/b-it-bots/mas_cob
22 https://github.com/alex-mitrevski/delta-execution-models
23 https://github.com/sthoduka/fmt_motion_detection
24 https://github.com/mas-group/tactile_slip_detector



8

Acknowledgement

We gratefully acknowledge the continued support of the team by the b-it Bonn-
Aachen International Center for Information Technology and Hochschule Bonn-
Rhein-Sieg.

References

1. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical
Movement Primitives: Learning Attractor Models for Motor Behaviors. Neural
Computation, 25(2):328–373, 2013.

2. J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Gold-
berg. Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point
Clouds and Analytic Grasp Metrics. CoRR, abs/1703.09312, 2017.

3. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, and A. C. Berg. SSD:
Single Shot MultiBox Detector. In Computer Vision – ECCV 2016, pages 21–37,
2016.

4. I. Awaad, G. K. Kraetzschmar, and J. Hertzberg. The role of functional affordances
in socializing robots. International Journal of Social Robotics, 7(4):421–438, March
2015.

5. E. Shpieva and I. Awaad. Integrating Task Planning, Execution and Monitoring for
a Domestic Service Robot. Information Technology, 57(2):112–121, March 2015.

6. M. Tenorth and M. Beetz. KnowRob – A Knowledge Processing Infrastructure for
Cognition-enabled Robots. Int. Journal of Robotics Research (IJRR), 32(5):566–
590, Apr. 2013.

7. A. Kuestenmacher, N. Akhtar, P. G. Plöger, and G. Lakemeyer. Towards Robust
Task Execution for Domestic Service Robots. In Journal of Intelligent & Robotic
Systems, volume 76, pages 5–33, September 2014.

8. A. Mitrevski, A. Kuestenmacher, S. Thoduka, and P. G. Plöger. Improving the
Reliability of Service Robots in the Presence of External Faults by Learning Action
Execution Models. In Proceedings of the 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 4256–4263, 2017.

9. A. Mitrevski, S. Thoduka, A. Ortega Sáinz, M. Schöbel, P. Nagel, P. G. Plöger, and
E. Prassler. Deploying robots in everyday environments: Towards dependable and
practical robotic systems. In 29th Int. Workshop Principles of Diagnosis DX’18,
2018.

10. D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hanne-
mann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely.
The kaldi speech recognition toolkit. In IEEE Workshop on Automatic Speech
Recognition and Understanding, pages 1–4. IEEE Signal Processing Society, 2011.

11. S. Thoduka, F. Hegger, G. K. Kraetzschmar, and P. G. Plöger. Motion Detection
in the Presence of Egomotion Using the Fourier-Mellin Transform. In Proceedings
of the 21st RoboCup International Symposium, 2017.

12. J. Sanchez, S. Schneider, N. Hochgeschwender, G. K. Kraetzschmar, and P. G.
Plöger. Context-Based Adaptation of In-Hand Slip Detection for Service Robots.
In Proceedings of the IFAC Symposium on Intelligent Autonomous Vehicles (IAV),
2016.

13. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. ROS: an open-source robot operating system. In ICRA Workshop on
Open Source Software, 2009.



9

Alex Mitrevski, Argentina Ortega Sainz, Patrick Nagel, Maximilian Schöbel,
Minh Nguyen, Roberto Cai Wu, Rohan Haseloff, Paul G. Plöger, Gerhard K.
Kraetzschmar

Lucy (Toyota HSR) Software and External Devices

Fig. 3: Lucy: a
Toyota HSR

We use a standard Human Support Robot (HSR) from Toyota.
No modifications have been applied.

Robot’s Software Description

For our robot, we are using the following software:

– Platform: Robot Operating Systems (ROS) [13]
– Navigation: Built-in ROS-based functionalities provided

by Toyota
– Arm control : In-house imitation learning framework and

MoveIt!25

– Object recognition: Single-shot Multi-box Detector (SSD)
[3]

– Speech recognition: Google Speech (online), PocketSphinx
and Kaldi (offline)

– Natural language processing : SocRob’s NLU26

– Gender recognition: In-house CNN model27

Most of our software is publicly available at https://github.
com/b-it-bots.

External Devices

Lucy relies on the following external hardware:

– Alienware 15”, Intel Core i9 processor and GTX 1080

Cloud Services

Lucy connects to the following cloud services:

– Speech recognition: Google Speech28

25 moveit.ros.org
26 https://github.com/socrob/mbot_natural_language_processing
27 https://github.com/oarriaga/face_classification
28 https://cloud.google.com/speech-to-text/


