UChile Peppers 2018 Team Description Paper

Javier Ruiz-del-Solar, Cristopher Gomez, Enmanuel Almonte, José Astorga, Lukas
Pavez, Nicolas Marticorena and Rodrigo Salas.

' Department of Electrical Engineering — Advanced Mining Technology Center (AMTC)
Universidad de Chile
http://robotica-uchile.amtc.cl/pepper-index.html

Abstract. The UChile Peppers robotics team participates in the RoboCup @Home Social Stan-
dard Platform League (SSPL) since its creation in 2017. The team is established under the De-
partment of Electrical Engineering and the Advanced Mining Technology Center (AMTC) of
the Universidad de Chile. The team’s focus is the advancement of HRI research through the
Pepper robot, and the development of applications that will benefit diverse populations. Our
main technological and scientific contribution will be the application of the deep learning para-
digm in the Pepper robot. The team collaborates with both the UChile Homebreakers and the
UChileRT, from the @Home OPL and the soccer SPL, respectively, to support each other’s re-
search and developments that will benefit the RoboCup community at large.

Keywords: Deep Learning, Social Robots, Social Standard Platform League.

1 Introduction

The UChile Peppers team has been a part of the @Home SSPL since its inception,
and is focused on improving the Pepper robot's service capabilities. The team works
to both improve the functionality of the Pepper system through software advance-
ments, and to develop new applications for the robot. The UChile Peppers team is
committed to Open Source development and contributing to the RoboCup community.
To the extent possible, all advancements are made available through GitHub; and the
team looks forward to connecting and sharing with the rest of the teams at the
RoboCup 2018 in Montreal.

2 Background

UChile's team members have participated in RoboCup activities in many ways: The
UChile Robotics Team (UChileRT) has been involved in RoboCup competitions since
2003 in different leagues: Four-legged 2003-2007, Standard Platform League (SPL)
in 2008-2017, Humanoid League in 2007-2009, @Home in 2007-2015, @Home
SSPL in 2017, and @Home OPL in 2017; Dr. Javier Ruiz-del-Solar was the organiz-
ing chair of the Four-Legged competition in 2007, TC member of the Four-Legged
league in 2007, TC member of the @Home league in 2009, Exec Member of the
@Home league between 2009 and 2015, and co-chair for the RoboCup 2010 Sympo-

sium. Among the main scientific achievements of the group to be highlighted, are five
important RoboCup awards: RoboCup 2004, 2015 and 2017 Best Paper Award, and
RoboCup @Home Innovation Award in 2007 and in 2008. In addition, UChile's team
members have published a total of 42 papers in RoboCup Symposia between 2003
and 2017, 19 of them corresponding to oral presentations.

In the SPL league where Nao robots are used, UChileRT reached the fourth place
in the three RoboCup World Competitions (2014 in Brazil, 2015 in China and 2016 in
Germany). In addition, given our work in domestic robotics during the past 10 years,
and our participation in the RoboCup@Home with our own-designed Bender robot, in
which we use standard development tools and middleware such as ROS, we are in a
privilege position to bring together our experience of software development from the
Nao platform, and our experience in domestics robotics using our own developments
and standard tools (e.g. ROS) into Pepper.

In summary, we feel that we are very prepared to carry out innovative research
work Pepper robot, because we have a vast experience working with Naoqi at differ-
ent levels, and we have already developed software for a service robot in the @Home
league using ROS, which is the framework that we want to use in Pepper. In addition,
it is worth to stress that we already participated in the SSPL in 2017, obtaining the 5®
position between seven teams.

3 Current research

3.1 Application of the Deep Learning Paradigm in the Pepper Robot

Deep learning has allowed a paradigm shift in pattern recognition, from using hand-
crafted features together with statistical classifiers, to using general-purpose learning
procedures to learn data-driven representations, features, and classifiers together. The
use of the deep learning paradigm has facilitated addressing several computer vision
problems in a more successful way than with traditional approaches. In fact, in several
computer vision benchmarks, such as the ones addressing image classification, object
detection and recognition, semantic segmentation, and action recognition, just to
name a few, most of the competitive methods are now based on the use of deep learn-
ing techniques. In addition, most of the recent presentations at the flagship confer-
ences in this area (e.g. CVPR, ECCV, ICCV) use deep learning methods or hybrid ap-
proaches that incorporate deep learning. Deep learning has already attracted the atten-
tion of the robot vision community [1]. However, given that new methods and algo-
rithms are usually developed within the computer vision community and then trans-
ferred to the robot vision community, the question is whether or not new deep learn-
ing solutions to computer vision and recognition problems can be directly transferred
to robot vision applications. We believe that this transfer is not straightforward con-
sidering the multiple requirements of current deep learning solutions in terms of
memory and computational resources, which in many cases include the use of GPUs.
We want to address this important challenge with the Pepper robot, by developing vi-
sion applications for the Pepper that can work without any external hardware. In order

to achieve this, we will base our work in the use of novel compression and quantiza-
tion implementations of existing deep networks. In [2] we analyzed the general prob-
lem of using CNNs in robots with limited computational capabilities, and we pro-
posed general design guidelines for their use. In addition, two different CNN based
robot detectors that are able to run in real-time, in NAO robots while playing soccer,
were proposed. Each detector is able to process a robot object-proposal in ~1ms, with
an average number of 1.5 proposals per frame obtained by the upper camera of the
NAO. The obtained detection rate was ~97%. This work will be extended and applied
in Pepper robots.

3.2 Neural Networks Models

Different approaches have been proposed for the compression and quantization of
CNNs. Among them, methods that compute the required convolutions using FFT [6],
methods that use sparse representation of the convolutions such as [7] and [8], meth-
ods that compress the parameters of the network, and binary approximations of the
filters [4]. This last option has shown very promising results. In [4], two binary-based
network architectures are proposed: Binary-Weight-Networks and XNOR-Networks.
In Binary-Weight-Networks, the filters are approximated with binary values in closed
form, resulting in a 32x memory saving. In XNOR-Networks, both the filters and the
input of convolutional layers are binary, but non-binary non-linearities like ReLU can
still be used. This results in 58x faster convolutional operations on a CPU, by using
mostly XNOR and bit-counting operations. The classification accuracy with a Binary-
Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet
(in top-1 measure); while XNOR-Networks have a larger, 12.4%, drop in accuracy.
An alternative to compression and quantization is to use networks with a low number
of parameters in a non-standard CNN structure, such as the case of SqueezeNet [3].
Vanilla SqueezeNet achieves AlexNet accuracy using 50 times fewer parameters. This
allows for more efficient distributed training and feasible deployment in low-memory
systems such as FPGA and embedded systems such as robots. In this work, we select
XNOR-Net and SqueezeNet for implementing object detectors to be used in the Pep-
per robots.

3.3 Design and Training Guidelines

In [2] we proposed general design guidelines for CNNSs to achieve real-time operation
and still maintain acceptable performances. These guidelines consist on an initializa-
tion step, which sets a starting point in the design process by selecting an existing
state-of-the-art base network, and by including the nature of the problem to be solved
for selecting the objects proposal method and size, and an iterative design step, in
which the base network is modified to achieve an optimal operating point under a
Pareto optimization criterion that takes into account inference time and the classifica-
tion performance.

Initialization

- Object Proposals Method Selection: A fast method for obtaining the object proposals
must be selected. This selection will depend on the nature of the problem being
solved, and on the available information sources (e.g., depth data obtained by a range
sensor). In problems with no additional information sources, color-based proposals
are a good alternative (e.g., in [5]).
- Base Network Selection: As base network a fast and/or lightweight neural model, as
the ones described in sub-section 3.2 must be selected. As a general principle, net-
works already applied in similar problems are preferred.
- Image/Proposal Size Selection: The image/proposal size must be set accordingly to
the problem’s nature and complexity. Large image sizes can produce small or no in-
creases in classification performance, while increasing the inference times. The image
size must be small, but still large enough to capture the problem’s complexity. For ex-
ample, in face detection, an image/window size of 20x20 pixels is enough in most
state-of-the-art detection systems.
Sequential Iteration
A Pareto optimization criterion is needed to select among different network’s configu-
rations with different classification performances and inference times. The design of
this criterion must reflect the importance of the real-time needs of the solution, and
consider a threshold, i.e. a maximum allowed value, in the inference time from which
solutions are feasible. By using this criterion, the design process iterates for finding
the Pareto’s optimal number of layers and filters:
- Number of layers: Same as in the image size case, the needed number of layers de-
pends on the problem complexity. For some classification problems with a high num-
ber of classes, a large number of layers is needed, while for two-class classification,
high performances can be obtaining with a small number of layers (e.g. as small as 3).
One should explore the trade-off produced with the number of layers, but this selec-
tion must also consider the number of filters in each layer. In the early stages of the
optimization, the removal of layers can largely reduce the inference time without hin-
dering the network’s accuracy.
- Number of filters: The number of filters in each convolutional layer is the last pa-
rameter to be set, since it involves a high number of correlated parameters. The varia-
tions in the number of filters must be done iteratively with slight changes in each step,
along the different layers, to evaluate small variations in the Pareto criterion.

The proposed guidelines are general, and adaptations must be done when applying
them to specific deep models and problems.

4 Approach implemented on the Pepper

In order to develop software for the Pepper robot we use the ROS (Robot Operating
System) interface provided by Aldebaran. The interface enables the reading of the
sensors and the control of the actuators through the standards of ROS. Also, provides
a wrapper for the Naoqi library that has some interesting functionalities, like Speech
Recognition and Sound Localization. With this, we can use all the software already
developed for ROS compatible machines, especially those that were developed for

our Bender robot of the OPL. The diagram of the Fig. 1 shows the relationships be-
tween the ROS software and the Pepper robot. Another plus coming from using ROS
is the option to use the ROS-Python Skill interface developed in our laboratory. This
interface makes the high-level behaviors be easy to program. Additionally the ROS-
Python Skill interface grants the option to share behaviors between our Bender robot
of OPL and our Pepper robot of SSPL.

‘ROS Interface
: [ROS Navigation Stack Perception
] — Face & Person
1 World Modelin i
State Machine ROS-python 1 g Analysis
(Behaviors) Skill Interface .
i — Object
: Decision Recognition
Making
INAOQUI interface Lo
Speech Synthesis, b e d
Recognition &
Localization
SE Pepper Bringup

(Aldebaran)

Arm Control

ROS Driver

. Pepper Hardware

Loudspeaker,
Face Leds Neck Motors . . Cj
[Microphones RGB-D Sensor
‘ Laser Mobile Arm/Gripper ’

Scanners Platform Motors

Fig. 1. Diagram ROS/NAOQUI Interface

The ROS framework has been successfully installed on the Pepper’s onboard com-
puter. The challenge to install ROS in Pepper could be very time consuming for new
teams. The Operating System running on the onboard computer is an old version of
Gentoo without a good package manager. Therefore, the best option is to install ROS
and his dependencies from source. A list of the dependencies libraries can be found in
our github page.

The main system running on the Pepper’s onboard computer is the ROS Naviga-
tion Stack. The Face & Person Analysis and Object Recognition systems run on an
external computer connected by wireless network with Pepper (see Fig. 1.). Given
that the mentioned subsystems are very expensive in terms of computational power,
just one system can run on the onboard computer. Navigation has priority above the
others, because it needs a fast and reliable communication with the sensors and actua-
tors of the robot.

5 Re-usability of the System for other Research Groups

Our goal is that all our developments will be open source. That means that the follow-
ing components will be open source and will be made available:

— Vision library based on DNNs for Pepper.
— Facial features recognition system based on DNNGs library.
— Image segmentation system based on DNNGs library.

6 Applications in the real world

Pepper is a social robot designed to charismatically relate to people, as it has many

skills with the potential for great social impact. The UChile Peppers team is dissemi-

nating the associated technologies, contributing to the development of robotics itself
and motivating the interest of children and young people, through talks at different
schools and universities, continuing and supplementing the efforts started with the

Bender robot of the UChile Homebreakers team. Taking advantage of its social skills

and their impact on children, Pepper can help teach different things in schools, not

just robotics. Moreover, Pepper will be very relevant in the development of students
at university level as a research subject in different fields, especially in those dedi-
cated to human-robot interaction, due to its vanguard technology.

Two initiatives under development are the following:

- A project carried out by one of the team members (E. Almonte) for making Pep-
per a sight guide for people with impaired vision. A first version of this system
will be ready at the end of this year.

- The use of Pepper as a motivation tool for children. Our Pepper robot has already
participated in two science fairs (see pictures in Fig. 2), and monthly visit of
schoolchildren to our laboratory are already scheduled for this and next years.

Fig. 2. Pepper participating in science fairs.

7 Conclusions and future work

In this TDP, the plans and goals of the new UChile Peppers robotic team have been
described. As a new team, they count on the support provided by the Universidad de
Chile's other robotics teams, namely UChile Homebreakers and UChileRT.

To this end, various lines of research are being pursued, with the common goal of
implementing powerful solutions in computationally limited platforms. This is impor-
tant research because by their very nature, mobile robots such as Pepper are computa-
tionally limited.

The research efforts of the UChile Peppers team are focused around the application
of the Deep Learning Paradigm through the use of Deep Neural Networks (DNNs),
where the team is investigating novel implementations of compression and quantiza-
tions of DNNs. Alongside this research, the team is developing algorithms for Seman-
tic Segmentation of indoor environments and for Object Recognition, using DNNs.

8 Acknowledgments

This work was funded by FONDECYT Project 1161500.

References

1. RSS 2016. Workshop: Deep Learning For Autonomous Robots.

2. Cruz, N., Lobos-Tsunekawa, K., Ruiz-del-Solar, J., (2017). Using Convolutional Neural
Networks in Robots with Limited Computational Resources: Detecting NAO Robots while
Playing Soccer. RoboCup Symposium 2017 (in press; best paper award).

3. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and<lmb modelsize. CoRR (2016),
http://arxiv.org/abs/1602.07360

4. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet Classification
Using Binary Convolutional Neural Networks, ECCV, 2016

5. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,
Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093 (2014)

6. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up Convolutional Neural Networks
with Low Rank Expansions. arXiv:1405.3866 [cs.CV]

7. Liu, B., Wang, M., Foroosh, H., Tappen, M., Penksy, M.: Sparse Convolutional Neural
Networks, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, 2015, pp. 806-814.

8. Han, S., Mao, H., Dally, W.J.: Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding (ICLR'16, best paper award)

9. Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Re-
search, 10:1755-1758, 2009.

10. Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan. Openface: A General-
Purpose Face Recognition Library with Mobile Applications. Technical report, CMU-CS-
16-118, CMU School of Computer Science, 2016.

11. Gil Levi and Tal Hassner. Age and Gender Classification Using Convolutional Neuralnet-
works. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) workshops,
June 2015.

12. Luca Mella and Daniele Bellavista. Recognizing Emotional States in Faces.
https://github.com/luca-m/emotime

Robot’s Description

Pepper's hardware description is standard and can be found on the official documenta-
tion provided by Aldebaran.

Regarding software, the Aldebaran supported ROS packages provides the core fea-
tures to work with the robot (drivers and URDF model of Pepper). Furthermore, we
have developed an improved version of the simulated robot for Gazebo, on top of the
baseline provided by Aldebaran. A major problem with the ROS approach is the lim-
ited computational resources that Pepper has. Considering this, an important amount
of effort is being dedicated to optimize the originals ROS packages.

— Navigation: ROS Navigation stack will be used for mapping, localization and plan-
ning. However, due to the limited field of view of Pepper short-range lasers, the
robot’s cameras will be used. A Visual SLAM implementation is in process.

— Face detection/recognition: For detection we use the dlib library [9]. For recogni-
tion we use the Openface research [10] based on the framework Torch.

— Facial features recognition: The following facial features have been developed: age
and gender recognition [11] using CNN with the framework Caffe, and emotion
recognition with the emotime library [12].

— Speech recognition and generation: We use the already incorporated speech recog-
nition and generation system in the robot; Nuance.

— Arms control and two-hand coordination: The ROS Movelt! Package is used and
has been successfully tested in the simulated version of Pepper.

Fig. 1. Simulation of Bender and Pepper robots.

The implementation of high level behaviors is achieved with hierarchical state ma-
chines, programed with the smach library of Python. An emphasis is applied to the
modularity and reutilization of code.

Additionally, for the purpose of making the programming of high level behaviors
more straightforward, a middle layer between the states machines and the ROS con-
trol interface exist based on the robot_skill interface designed by Tech United Eind-
hoven @HOME team.

	1 Introduction
	2 Background
	3 Current research
	3.1 Application of the Deep Learning Paradigm in the Pepper Robot
	3.2 Neural Networks Models
	3.3 Design and Training Guidelines

	4 Approach implemented on the Pepper
	5 Re-usability of the System for other Research Groups
	6 Applications in the real world
	7 Conclusions and future work
	8 Acknowledgments
	References
	Robot’s Description

