
Walking Machine @Home

2018 Team Description Paper

Jeffrey Cousineau and Philippe La Madeleine

École de Technologie Supérieure
1100 rue Notre-Dame Ouest, Montreal, QC, Canada H3C 1K3

http://walkingmachine.ca, walking@ens.etsmtl.ca,

https://github.com/WalkingMachine

Abstract. This paper gives details about the RoboCup@Home league
team Walking Machine, from ETS University in Montreal, Canada for
the next competition in his hometown, Montreal, in July 2018. The robot
from Walking Machine, named SARA for ”Système d’Assistance Robo-
tique Autonome” (in English, Automated Robotic Assistance System), is
a robot entirely built by the scientific club from ETS, mainly composed
of undergraduates students. The robot is used for social interaction with
humans, navigation and object manipulation. This document shows the
electrical, mechanical and software novelties and functionalities of SARA.

1 Introduction

Walking Machine’s team is a young team from Montreal, Quebec, in Canada,
composed of engineering students in the field of mechanical, electrical and soft-
ware engineering. We have been working really hard to improve our robot for
the next year Robocup@Home competition. As this would be our third partici-
pation, we learned a lot on our second attempt last year and have made many
improvements to get better results, mostly on the software side. In the past, the
team went in many competitions like the Eurobot, but made the leap for the
RoboCup@Home competition to get a bigger challenge and to get an opportu-
nity to bring novelty in the scientific community around robotic.

SARA, our creation, was designed for polyvalent human-robot interaction
as well as efficient navigation and object manipulation. Our robot is mounted
on four mecanum wheels powered by Roboteq drives, has one arm mimicking a
normal human arm, and sensors for communication and navigation. Our team
has developed knowledge in object and people detection/recognition, as well as
navigation using a laser scanner, odometry on the wheels and a Asus Xtion cam-
era. All of these parts are interfaced through ROS (Robot Operating System).

2 Jeffrey Cousineau and Philippe La Madeleine

2 Electrical and mechanical improvement

2.1 Electrical

As an improvement this year on the electrical side of our robot, we put a lot
of efforts in the organization of the electrical systems, we made it much clearer
and safer. We put a lot of protection for every sub-system since it’s easier to just
change a fuse than rebuilding a whole electronic circuit board.

Another big change for us was the battery system. Just before leaving for
Japan this year, we changed our custom LiPo battery to a system using common
tool batteries. This change has brought way more positive aspects than we ex-
pected. First of all, it gives us the ability to ship the robot without the batteries
and to bring the batteries in our personal luggage. Which is a big deal when it
comes to shipping robots overseas.

Second impact is that this type of battery is way safer and convenient than
what we had before. We can simply use the commercial charging station to
charge our batteries, this reduces our risk of fire and overcharge. Our onboard
dual batteries layout also brings enough charge to power our robot for a decent
amount of time and allow us to easily perform live battery swapping without
having to shut down the robot.

2.2 Mechanical

Some mechanical improvements were also made this year. There are mainly
two things we improved on our robot, the arm, and the base.

First of all, last year, our arm was made of 5 degrees of freedom, which makes
some path plan a little more complicated and sometimes, impossible. Because
of that, we decide to add 2 degrees of freedom with 2 dynamixel servo motors.
Since then, we have much better results with our inverse kinematic and this also
extend our range to get objects that are further.

Fig. 1. SARA 7
DoF arm

Next thing we improve was the compactness of our
robot base. On our first competition in Germany, we
observe that our robot was too large, which caused
some problems with our path planning around the doors.
By relying on these observations, we decided to reduce
the width which improved a lot the navigation capabili-
ties.

Walking Machine @Home 2018 Team Description Paper 3

3 Software

3.1 High-level task planning

For our task planning, we use a state machine software developed by team
Vigir, one of the participants of the Darpa Robotics Challenge. This software,
named FlexBe[4], for Flexible Behavior, is a block-based interface for making
state machines.

Fig. 2. FlexBe behavior representation

But we do not simply use FlexBe as is. We still need to write our own states
using its python API. To simplify our work, we started by splitting all of the
Robocup@home scenarios into basic actions. We then identified all of these basic
actions our platform could accomplish and we confined them in blocks named
States, e.g. MoveArm, MoveHead etc. These blocks can then be assembled to-
gether to form a higher level of blocks we named Actions e.g. Pick, LookAt etc.
Those Actions can then again be assembled into what we call ActionWrappers.
The role of ActionWrapper is to allow interfacing our Actions with our natu-
ral language processing software(see natural language processing below). They
receive the segmented text and translate it to computer understandable param-
eters using our Wonderland (see environment reasoning below) knowledge base
and other sources of information. This recursive structure allows us to quickly
develop our robot’s behaviours.

3.2 Natural language processing

To analyze the detected speech, we rely on a software develop by the Semantic
analytic group from the University of Roma and the Laboratory of Cognitive Co-
operating Robots at Sapienza University of Rome. This speech analyzer, named
LU4R[1] for “Language Understanding For Robots”, is composed of a server de-
veloped in Java which takes as an input the detected sentence and the semantic

http://philserver.bplaced.net/fbe/index.php
http://sag.art.uniroma2.it/
http://sag.art.uniroma2.it/
http://labrococo.dis.uniroma1.it/
http://labrococo.dis.uniroma1.it/
http://sag.art.uniroma2.it/lu4r.html

4 Jeffrey Cousineau and Philippe La Madeleine

environment surrounding the robot.

This server communicates through a REST service which gives it the possi-
bility to be compliant with all kind of platform. All you have to do is to launch
the server locally which is compiled through a .jar file. Again, this gives the
opportunity to use this software on every platform, whether you’re on Windows,
Linux or Mac. This software gives you the possibility to get different output
representation. We choose the amr representation since it was the easiest one to
understand and to implement.

We decided to build our own ROS wrapper, lu4r ros to better interface it
with our task planning approach. We first translate the answer given by LU4R
into the simple format, we call ActionForms. The ActionForms contains an ac-
tion followed by all of its possible parameters as identified in the FrameNet Index
of Lexical Units The ActionWrappers are then fed into a FIFO based priority
manager and finally send to our task planner.

What is also interesting about LU4R, it’s that it will use the semantic map-
ping in it’s analyzing process. All you have to do is to provide the correct pose for
every object in the robot’s environment. You can also precise various synonym
for every object to get a better understanding of the inputted sentence.

3.3 Object recognition

As a beginning team, we are still exploring various solution around the ob-
ject recognition problem. Our first plan was to use the object recognition kitchen
package from Willow Garage. But after using it in competition, we realized that
the performance and the easiness to use wasn’t the approach we were looking
for. As an alternative, we start using the YOLO[3] (You Only Look Once) ros
package.

YOLO is a real-time object detection. It does not only detect various object
but it also predicts the bounding boxes of the detected object. It uses a single
neural network which is applied to the image. Multiple regions are then created
and are used to predict the bounding boxes. Each of them also contains the pre-
dicted probability which is used to filter the predicted objects. The advantage
of this system is that it can detect multiple objects in a real-time scenario.

We use the ROS package to make our job easier since this gave us the pos-
sibility to directly get the recognized objects output into a ROS topic. We can
also get the bounding box for each detected object. First step we had to do was
to transform those 2D bounding boxes in 3D to get a specific pose according to
our robot.

https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/WalkingMachine/lu4r_ros
https://framenet2.icsi.berkeley.edu/fnReports/data/luIndex.xml
https://framenet2.icsi.berkeley.edu/fnReports/data/luIndex.xml

Walking Machine @Home 2018 Team Description Paper 5

Fig. 3. 2D bounding box to 3D grasping pose, current technique

For the moment, we created the package wm frame to box to approximate
the object pose with the depth point at the center of the bounding box. Even
though it can have flaws, this technique has also proven to be largely sufficient
for most of our applications and most importantly, it uses way less processing
power than the full 3D pattern matching we used before. This allows us to do
real-time object positioning, a capability we are proud of.

Afterward, to get better results and a better pose, we plan to subtract the
point cloud according to the bounding boxes. We will then use it with the point-
cloud segmentation from the PCL library to extract the specific object and send
it to a grasp identification package like haf grasping. This technique, compared
to what we are actually using would give us the possibility to grab a much wider
variety of object.

Fig. 4. 2D bounding box to 3D grasping pose, future technique

For the moment, we are using the YOLO model but, we are looking forward
to training our own dataset, just like we would do in competition. This is new
for us but we have all the tools we need to overcome this.

https://github.com/WalkingMachine/wm_frame_to_box
http://pointclouds.org
http://http://wiki.ros.org/haf_grasping

6 Jeffrey Cousineau and Philippe La Madeleine

3.4 Navigation

In addition to last year navigation stack, this year we are using the point-
cloud to lasercan package as a lighter solution for 3D mapping and obstacle
avoidance. This ensures a safe navigation around objects like table or chair since
only the legs are detected by the lidar laser. Another great thing about this
implementation is the fact that we can set the maximum height for collision
avoidance. That way, if there’s an obstacle at head level, our robot will avoid it
the same way it would with an object on the floor.

3.5 Environmental reasoning

As a novelty this year, we implemented our own solution for an environment
representation in a way that we think is simple and easy for everyone. Our pack-
age named wonderland is an agnostic system in the same way than LU4R. It’s
composed of a server that received HTTP query based on a custom API.

The first thing that is needed when you start using this platform is to pop-
ulate the database. This can be done manually if you already know the object
position, but this can be done by your robot through POST query. It’s also
possible to specify some room with a specific position relates to it. Once this is
done, you can call our API and for example, just by doing a GET request on
the URL http://wonderland:8000/object, this will return you the list of every
object the database contains. It’s also possible to filter the request by giving a
known color, link to the object or a location as a parameter.

Since the database is hosted as a server, you can access it from everywhere.
You could decide to export it to another computer, run it in the cloud or just
put it on the robot system itself. It also gives the possibility to have a dynamic
knowledge, meaning that the robot can update its knowledge of his environment
in real-time.

4 Conclusions and future work

As you can see, despite being a group of undergraduate students, our team is
about to catch up with the rest of the league. We’ve recently put a lot of efforts
into stabilizing our platform and fixing as many bugs as possible to give us a
strong foot to move forward.

With its new swappable batteries system, object detection network and nat-
ural language processing, our robot has become a fully functional autonomous
platform allowing us to focus our efforts on the challenges themselves instead of
continuously fixing our hardware.

http://wiki.ros.org/pointcloud_to_laserscan
http://wiki.ros.org/pointcloud_to_laserscan
http://github.com/walkingmachine/wonderland

Walking Machine @Home 2018 Team Description Paper 7

Robot SARA Hardware Description

Specifications for robot SARA are as follows:

SARA

Base Custom base with fully holonomic platform
Right arm 7 DoF custom arm made of Kinova motors
Neck Tilt and pan unit using two Dynamixel MX-64R servo actuator
Head Custom head made of RGB neopixels leds and Asus Xtion Pro
Gripper Robotiq 2 fingers 140mm

Dimensions
Base : 0,61m. X 0,77m.
Height : 1,68m.

Weight ∼60kg
Additional sensors Hokuyo UTM-30LX on base
Microphone Rode microphone
Batteries 2x 20V Dewalt drill battery 5aH
Computer 1x Lenovo p50 with 32GB RAM and nVidia Quadro M2000

4GB, 1x Raspberry Pi 3

Table 1. Robot’s hardware description

Fig. 5. Robot
SARA

Robot’s Software Description

For our robot we are using the following software:

– Platform: Robotic Operating System (ROS) Kinetic on
Ubuntu 16.04

– Navigation, localization and mapping: Gmapping, AMCL,
pointcloud to laserscan

– Face recognition: People
– Speech recognition: Google Speech API
– Speech comprehension: LU4R, lu4r ros
– Speech generation: Svoxpico
– Object recognition: Darknet with YOLO v2
– Arm control: MoveIt and Kinova API
– Task executor: Flexbe
– World reprensentation: Wonderland

http://wiki.ros.org/gmapping
http://wiki.ros.org/amcl
http://wiki.ros.org/pointcloud_to_laserscan
http://wiki.ros.org/people
https://github.com/WalkingMachine/lab_ros_speech_to_text
http://sag.art.uniroma2.it/lu4r.html
https://github.com/WalkingMachine/lu4r_ros
https://doc.ubuntu-fr.org/svoxpico
https://github.com/WalkingMachine/wm_darknet
http://wiki.ros.org/moveit
https://github.com/Kinovarobotics/kinova-ros
http://wiki.ros.org/flexbe
http://github.com/walkingmachine/wonderland

8 Jeffrey Cousineau and Philippe La Madeleine

Team members

Jeffrey Cousineau, Philippe La Madeleine, Maxime St-Pierre, Nathalie Connolly,
Jimmy Poirier, Léonore Jean-François, Samuel Otis, Redouane Laref, Louis-
Charle Labarre, Lucas Maurice, Nicolas Nadeau, Simon Landry, Cheuk Fai
Shum, Veronica Romero Rosales, Nicolas Bernatchez, Quentin Gaillot, Raphael
Duchaine, Jean-Frederic Boivin

References

1. LU4R Project - adaptive spoken Language Understanding For Robots.
2. Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d

pose estimation using part affinity fields. In CVPR, 2017.
3. Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint

arXiv:1612.08242, 2016.
4. Philipp Schillinger, Stefan Kohlbrecher, and Oskar von Stryk. Human-Robot Col-

laborative High-Level Control with an Application to Rescue Robotics. In IEEE
International Conference on Robotics and Automation, Stockholm, Sweden, May
2016.

5. Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics.
Springer, 2016.

6. Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous Mobile
Robots. Bradford Company, Scituate, MA, USA, 2004.

7. Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. Hand keypoint
detection in single images using multiview bootstrapping. In CVPR, 2017.

8. Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional
pose machines. In CVPR, 2016.

9. Stephen J. Wright. Coordinate descent algorithms. Math. Program., 151(1):3–34,
June 2015.

	Walking Machine @Home 2018 Team Description Paper
	Jeffrey Cousineau and Philippe La Madeleine
	Introduction
	Electrical and mechanical improvement
	Electrical
	Mechanical

	Software
	High-level task planning
	Natural language processing
	Object recognition
	Navigation
	Environmental reasoning

	Conclusions and future work

