
Tech United Eindhoven @Home
2018 Team Description Paper

M.F.B. van der Burgh , J.J.M. Lunenburg, R.P.W. Appeldoorn,
R.W.J. Wijnands, T.T.G. Clephas, M.J.J. Baeten, L.L.A.M. van Beek,
R.A. Ottervanger, S. Aleksandrov, T. Assman, K. Dang, J. Geijsberts,

L.G.L. Janssen, H.W.A.M. van Rooy, A.T. Hofkamp and
M.J.G. van de Molengraft

Eindhoven University of Technology,
Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

http://www.techunited.nl, techunited@tue.nl,

https://github.com/tue-robotics

Abstract. This paper provides an overview of the main developments of
the Tech United Eindhoven RoboCup@Home team. Tech United uses an
advanced world modeling representation system called the Environment
Descriptor that allows straightforward implementation of localization,
navigation, exploration, object detection & recognition, object manipu-
lation and robot-robot cooperation skills. Recent developments are im-
proved object and people detection via deep learning methods, a generic
GUI for different user levels, improved speech recognition, improved nat-
ural language interpretation and sound source localization.

1 Introduction

Tech United Eindhoven1 is the RoboCup student team of Eindhoven Univer-
sity of Technology2 that (since 2005) successfully competes in the robot soccer
Middle Size League (MSL) and later (2011) also joined the ambitious @Home
League. The Tech United @Home team is the vice World champion of RoboCup
2017 in Nagoya, Japan and the vice European champion of the 2017 RoboCup
German Open. The robot soccer middle-size Tech United team has an even
more impressive track record with three world championship titles. See the Tech
United website for more results. Tech United Eindhoven consists of (former)
PhD and MSc. students and staff members from different departments within
the Eindhoven University of Technology.

This Team Description Paper is part of the qualification package for RoboCup
2018 in Montreal, Canada and describes the current status of the @Home activ-
ities of Tech United Eindhoven.

1 http://www.techunited.nl
2 http://www.tue.nl



2 Tech United Eindhoven

2 Environment Descriptor (ED)

The TUe Environment Descriptor (ED) is a Robot Operating System (ROS)
based 3D geometric, object-based world representation system for robots. In
itself ED is a database system that structures multi-modal sensor information
and represents this in an object-based world representation that can be utilized
for robot localisation, navigation, manipulation and interaction functions. Figure
1 shows a schematic overview of ED. ED is used on our robots AMIGO and
SERGIO in the open @Home league and will be used on the Toyota HSR in the
DSPL league. In previous years, developments have been focussed on making
ED platform independent. As a result ED has been used on the PR2 system,
Turtlebot and Dr. Robot systems (X80). ED is a single re-usable environment

Fig. 1. Schematic overview of TUe Environment Descriptor.

description that can be used for a multitude of desired functionalities instead of
having different environment representations for localization, Adaptive Monte
Carlo Localization (AMCL), navigation (MoveBase), manipulation (MoveIt!),
interaction, etc.. An improvement in this single, central world model will reflect
in the performances of the separate robot capabilities. It omits updating and
synchronization of multiple world models. At the moment different ED plugins
exist that enable robots to localize themselves, update positions of known objects
based on recent sensor data, segment and store newly encountered objects and
visualize all this through a web-based GUI, illustrated in Figure 7.

2.1 Localization, Navigation and Exploration

The ed localization3 plugin implements AMCL based on a 2D render from the
central world model. In order to navigate, a model of the environment is required.

3 https://github.com/tue-robotics/ed_localization



Tech United Eindhoven @Home 2018 Team Description Paper 3

Fig. 2. A view of the world model created with ED. The figure shows the occupation
grid as well as (unknown) objects recognized on top of the cabinet.

This model is stored in the ED. From this model, a planning representation is
derived that enables using the model of the environment for navigation purposes.
With use of the ed navigation plugin4, an occupancy grid is derived from the
world model and published as a nav msgs/OccupancyGrid. This grid can be
used by a motion planner to perform searches in the configuration space of the
robot.
With the use of the cb base navigation ROS package5 the robots are able to
deal with end goal constraints. With use of a ROS service, provided by the
ed navigation plugin, an end goal constraint can be constructed w.r.t. a specific
world model entity described by ED. This enables the robot to not only navigate
to poses but also to areas or entities in the scene. Somewhat modified versions
of the local and global ROS planners available within move base are used.

2.2 Object detection

Detection & Segmentation. ED enables integrating sensors through the use
of the plugins present in the ed sensor integration package. Two different plugins
exist: 1. The laser plugin: Enables tracking of 2D laser clusters. This plugin can
be used to track dynamic obstacles such as humans. 2. The kinect plugin: Enables
world model updates with use of data from the Microsoft KinectTM. This plugin
exposes several ROS services that realize different functionalities:

(a) Segment: A service that segments sensor data that is not associated with
other world model entities. Segmentation areas can be specified per entity
in the scene. This allows to segment object ‘on-top-of’ or ‘in’ a cabinet.

(b) FitModel: A service that fits the specified model in the sensor data of the Mi-
crosoft KinectTM. This allows updating semi-static obstacles such as tables
and chairs.

4 https://github.com/tue-robotics/ed_navigation
5 https://github.com/tue-robotics/cb_base_navigation



4 Tech United Eindhoven

The ed sensor integration plugins enable updating and creating entities. How-
ever, new entities are classified as unknown entities.

2.3 Object grasping, moving and placing

As for manipulating objects, the architecture is only focused on grasping. The
input is the specific target entity in the world model ED. The output is the grasp
motion, i.e. joint positions for all joints in the kinematic chain over time. Figure
3 shows the grasping pipeline. A python executive queries the current pose of the

Fig. 3. Custom grasping pipeline base on ED, MoveIt and a separate grasp point
determination and approach vector node.

entity from ED. The resulting grasp pose goes to the grasp precompute compo-
nent which makes sure that the object is approached in a proper way. MoveIt will
produce joint trajectories over time with use of the current configuration, the
URDF model and the final configuration. Note that MoveIt currently does not
take any information from ED into account. This is planned to be implemented
before RoboCup. Finally, the trajectories are sent to the reference interpolator
which sends the trajectories either to the controllers or the simulated robot.

The grasping pipeline is extended with an empty spot designator and grasp-
ing point determination. The empty spot designator searches in an area for an
empty spot to place an object by using the occupied area by other objects in
this area.
The grasp point determination uses the information about the position and shape
of the object in ED to determine the best grasping point. The grasping point is
a vector relative to the robot. An example of the determined grasping point is
shown in Figure 4.

3 Image Recognition

In order the classify or train unknown entities, the ed perception plugin6 exposes
ROS services to classify the entities in the world model. The ed perception mod-
ule interfaces with various image recognition nodes that apply state of the art
image classification techniques based on Convolution Neural Networks (CNN).

6 https://github.com/tue-robotics/ed_perception



Tech United Eindhoven @Home 2018 Team Description Paper 5

Fig. 4. Grasping point determination result for a cylindric object.

3.1 Object recognition using Deep Learning

Object recognition is done using Tensorflow by retraining the top-layer of a In-
ception V3 neural network. The top layers are retrained on a custom dataset
using a soft-max top-layer that maps the image representation on a specified set
of labels.
In order to create a new training set for specific objects, the ed perception and
the image recognition packages contain several tools for segmenting and anno-
tating objects. Tools for retraining neural networks are included.

3.2 Face recognition

Face detection and recognition is done using OpenFace based on Torch. Open-
Face is an existing state-of-the-art face recognition library. We implemented a
ROS node that enables the use of these advanced technologies within the ROS
network.

3.3 ROS packages

Our image recognition ROS packages can be found on GitHub7 together with
tutorials and documentation. Recently, they have also been added to the ROS
Kinetic package list and can be installed as Debian packages:

ros−k i n e t i c−image−r e c o g n i t i o n

7 https://github.com/tue-robotics/image_recognition



6 Tech United Eindhoven

4 Pose detection

Pose detection is done with OpenPose8. OpenPose is a real-time multi-person
keypoint detection library for body, face, and hands. It’s used for example in the
restaurant challenge to detect waving persons. In the finals we used it to detect
when an operator points to objects in the living room. For that we ray-traced
the vector of the arm in our world model and extracted the first object that the
ray intersects. This enables the robot to understand commands like: “Give me
that object”. See figure 5 for an example of the output of the algorithm.

Fig. 5. Pose detection

5 Sound source localization

To perform proper speech recognition, knowing the direction of the sound is
important to capture the sound source properly. We localize the sound source
by determining the direction of arrival (DOA) with use of the microphone ar-
ray board with 8 microphones9 of the Matrix Creator. The detection is done
by first calculating the time cross correlation between four pairs of opposing
microphones. Second, the microphone pair with the lowest phase shift w.r.t. the
opposing microphone is selected as being perpendicular to the source. Finally,
the direction of the source can be determined by combining this information
with the energy level10 of the microphones. Our software for the DOA detec-
tion is available on GitHub, as well as a ROS package11 that exposes the DOA
detections via a geometry msgs/PoseStamped topic interface.

8 https://github.com/CMU-Perceptual-Computing-Lab/openpose
9 https://creator.matrix.one

10 https://github.com/tue-robotics/matrix-creator-hal
11 https://github.com/tue-robotics/matrix_creator_ros



Tech United Eindhoven @Home 2018 Team Description Paper 7

6 Human-Robot Interface

In order to interact with the robot aside from speech, a web-based Graphical
User Interface (GUI) has been designed. The interface uses HTML512 and is
hosted on the robot itself. This allows multiple users on different platforms (e.g.
Android, iOS) to access functionality of the robot. The interface is implemented
in JavaScript with AngularJS and it offers a graphical interface to the Robot
API13 which exposes all the functionality of the robot. Figure 6 gives an overview
of the connections between these components. Figure 7 gives an example of vari-

Fig. 6. Overview of the WebGUI architecture. The robot’s functionalities are exposed
with the Robot API that is implemented in JavaScript. A webserver that is hosting
the GUI connects this Robot API to a graphical interface that is offered to multiple
clients on different platforms.

ous user interactions that are possible with the GUI and the different commands
that can be given to the robot while interacting with the virtual scene.

Fig. 7. Illustration of the 3D scene of the WebGUI. Users can interact with use of the
menu that appears when long pressing an object in the scene. On the left figure, the
user commands the robot to inspect the selected object, which is the ‘cabinet’. When
the robot has inspected the ‘cabinet’, it has found entities on top of it. In the middle
figure a grasp command is given to the robot to pick up an object from the cabinet.
The last figure show the robot executing that action.
12 https://github.com/tue-robotics/tue_mobile_ui
13 https://github.com/tue-robotics/robot-api



8 Tech United Eindhoven

6.1 Re-usability of the system for other research groups

Tech United takes great pride in creating and maintaining open-source software
and hardware to accelerate innovation. Tech United initiated the Robotic Open
Platform website14, to share hardware designs. All packages include documen-
tation and tutorials. Tech United and its scientific staff have the capacity to
co-develop (15+ people), maintain and assist in resolving questions.

6.2 Community Outreach and Media

The Tech United team carries out many promotional activities for children to
promote technology and innovation. These activities are performed by separate
teams of student assistants. Tech United often visits primary and secondary
schools, public events, trade fairs and has regular TV appearances. In 2015
and 2016 combined, 100+ demos were given and an estimated 50k people were
reached through live interaction. Tech United also has a very active website15,
and interacts on many social media like: Facebook16, YouTube17, Twitter18 and
Flickr19. Our robotics videos are often shared on the IEEE video Friday website.

Bibliography

References

1. Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

2. H. Bruyninckx. Open robot control software: the orocos project. In Proceedings of
the 2001 IEEE International Conference on Robotics & Automation, 2001.

3. D. Fox. Adapting the sample size in particle filters through kld-sampling. The
International Journal of Robotics Research, 22(12):985–1003, 2003.

4. D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. IEEE Magazine on Robotics & Automation, 4(1):23–33, 1997.

14 http://www.roboticopenplatform.org/
15 http://www.techunited.nl
16 https://www.facebook.com/techunited
17 https://www.youtube.com/user/TechUnited
18 https://www.twitter.com/TechUnited
19 https://www.flickr.com/photos/techunited/



Tech United Eindhoven | Robot Description

Amigo’s Hardware Description

Fig. 8. The Amigo
Robot

AMIGO (Autonomous Mate for Intelligent Opera-
tions, see Fig. 8) has competed in RoboCup@Home
since 2011. Its design is based on a Middle Size League
soccer robot, equipped with two PhilipsTM Experi-
mental Robotic Arms mounted on an extensible up-
per body. Based on our experiences with AMIGO,
SERGIO (Second Edition Robot for Generic Indoor
Operations, has been developed. The main differences
with AMIGO are the use of Mecanum wheels which
are compliantly suspended, the torso with two degrees
of freedom and the modular setup. The core specifi-
cations of AMIGO are shown in Table 1. More de-
tails about the robots are on the Robotic Open Plat-
form20, where all CAD drawings, electrical schematics
and CAD files are published. SERGIO will not enter
the competition this year.

Table 1. Core specifications of AMIGO

AMIGO

Name Autonomous Mate for IntelliGent
Operations

Base Fully holonomic omni-wheel plat-
form

Torso 1 vertical DoF using a ball screw
Manipulators 2 7-DoF PhilipsTM Experimental

Robotic Arms
Neck Pan-tilt unit using two Dynamixel

RX-64 servo actuators
Head Microsoft KinectTM for XBox

360TM

External devices Wireless emergency button
Dimensions Diameter: 0.75 m, height: ±1.5 m
Weight ±84 kg
Additional sen-
sors

Hokuyo UTM-30LX laser range
finder on base and torso

Microphone RØDE Videomic and Matrix Cre-
ator

Batteries 4× Makita 24 V, 3.3 Ah
Computers 3× AOpen Mini PC with Core-

i7 processor and 8 GB RAM and
NVidia Jetson TX2

20 http://www.roboticopenplatform.org/

Robot software and hardware specification sheet



Tech United Eindhoven | Robot Description

AMIGO’s Software Description

An overview of the software used by the Tech United Eindhoven @Home robots
is shown in Table 2. All our software is developed open-source on GitHub21.

Some image recognition packages are released into the ROS Kinetic distribu-
tion and can be installed with use of apt.

Table 2. Software overview of Amigo.

Operating system Ubuntu 16.04 LTS Server
Middleware ROS Kinetic [1]
Low-level control software Orocos Real-Time Toolkit [2]

https://github.com/tue-robotics/rtt_control_

components

Simulation Custom kinematics + sensor simulator
https://github.com/tue-robotics/fast_simulator

World model Environment Descriptor (ED), custom
https://github.com/tue-robotics/ed

Localization Monte Carlo [3] using Environment Descriptor (ED), custom
https://github.com/tue-robotics/ed_localization

SLAM Gmapping package
http://wiki.ros.org/gmapping

Navigation CB Base navigation
https://github.com/tue-robotics/cb_base_navigation

Global: custom A* planner
Local: modified ROS DWA [4]

Arm navigation Custom implementation using MoveIt and Orocos KDL
https://github.com/tue-robotics/tue_manipulation

Object recognition Tensorflow ROS
https://github.com/tue-robotics/image_recognition/

tree/master/tensorflow_ros

People detection Custom implementation using contour matching
https://github.com/tue-robotics/ed_perception

Face detection & recogni-
tion

Openface ROS
https://github.com/tue-robotics/image_recognition/

tree/master/openface_ros

Speech recognition Dragonfly + WindowsTM Speech Recognition
https://github.com/tue-robotics/dragonfly_speech_

recognition

Speech synthesis PhilipsTM Text-to-Speech
Task executors SMACH

https://github.com/tue-robotics/tue_robocup

21 https://github.com/tue-robotics

Robot software and hardware specification sheet



Tech United Eindhoven | Robot Description

External Devices

AMIGO relies on the following external hardware:

– Tyro 2-channel wireless emergency stop (https://www.tyroremotes.nl)
– Apple iPad for the web GUI (https://www.apple.com)

Cloud Services

AMIGO connects the following cloud services:

– Skybiometry face detection (https://skybiometry.com/)

Robot software and hardware specification sheet


