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Abstract. This paper describes our service robot Tinker of Tsinghua University, China,
including the mechanical system, hardware system and software system. Tinker is designed
to be an autonomous robot in domestic environment, capable of navigating in complicated
environment and finishing different tasks, mainly following the rules of @Home League of
World RoboCup 2017. This paper introduces both the hardware design of the robot and
the algorithms we have proposed and implemented.

1 Introduction

Tinker is developed by FuRoC (Future Robotics Club), which is a student group in Tsinghua
University focusing on robotics, Al and related areas. It is our third participation in the @home
League of World RoboCup. Tinker is designed to be an autonomous humanoid robot mainly for
home service. To complete home service tasks, abilities such as automatic navigation, environment
perception, interaction with human, recognizing and carrying small objects, etc, are required.
Tinker is equipped with a mobile chassis, a lift platform, a 6-DoF arm, and different kinds
of sensors. Depth cameras (Kinect v2 and primesense) are used for imaging and recognizing
environment, objects and different user. A laser scanners is used for sensing the surroundings
and navigation. Tinker is also equipped with a microphone for hearing and understanding voice
orders.

2 Overview of the robot

2.1 Overview of the architecture

Tinker system has to deal with challenges at different levels from hardware interface to artificial
intelligence. Thus, a multi-level, distributed architecture based on ROS is employed to meet such
requirement. The hardware layer are the motors and the sensors of the robot. The hardware-
communication layer is responsible for controlling the motors and acquiring information from the
sensors. The output of the hardware layer is ROS-compatible sensor images including camera
image, point cloud and multiple other topics. The logic layer is responsible for providing basic
functions of a robot such as manipulation, navigation, human tracking, object recognition, speech
recognition and synthesis etc. The decision layer listens to topics published by the logic layer
and makes decision for the next high-level action to make.

The hardware layer The motors we use are:

1. Times Brilliant DMS-055A motors for driving the chassis and the platform
2. ALFS ASME-03 high-torque servo for the robot arm
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Fig. 1: The architecture of the hardware-communication layer

3. Dynamixel MX-64 servo for robot hand
The sensors we use are:

1. Hokuyo URGO4LX laser scanner for navigation

2. Kinect v2 depth camera for navigation and object detection
3. Logitech C170 camera for object recognition and detection
4. Infrared proximity sensor for manipulation

The hardware-communication layer The hardware communication layer must be highly
scalable to quickly install and remove different sensors and executors. All control commands
of the robot are sent to the ROS nodes running on the Xilinx ZYNQ soc. The ZYNQ soc then
controls the motor peripheral. For sensors, those which already have had a ROS wrap like Kinect,
camera and laser scanner are directy connected to the laptop computer while the feedback of
motors other senor messages that need further processing to ROS messgaes are sent to ZYNQ),
where ROS nodes are running to collect information and tranlate them to ROS messages.

The logic layer Most important robot functions are implemented in this layer. The main
components in this layer include:

1. Navigation: Mapping, localization, route-planning and collision avoidance
2. Vision: Human recognition, object recognition and their tracking.

3. Speech: Speech recognition and synthesis

4. Arm control: Manipulation with feedback from vision

The decision layer Task planning is done in decision layer. For different tasks, modules in
decision layer run as state machine. They integrate different information from the low layer to
judge the state they are in and then give different orders or make different responses. Each
module deal with a single task, sharing the common information from the lower layers.

3 Mechanical Design

To complete most of home serving tasks, our robot consists of three major parts: chassis based
on Mecanum wheel, Ball screw Actuator and robot arm including hand. Tinker is about 150cm
in height.
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Fig. 2: Picture of tinker robot

Chassis Tinker can move in any direction easily owing to the Mecanum chassis. The chassis
consists of 4 separated Mecanum wheel systems, each of which consists of a Mecanum wheel, a
brushless DC motor (50W24V), a worm gear box and a brush-less DC motor driver. The PC
sends control message to the ZYNQ to command the chassis to move as planed based on ROS.
The chassis has a size of 800mm x 500mm x 200mm.

Robot arm and hand The robot arm is the most major part of the mobile robot, used to
grasp objects. The complete arm consists of a 3-axis cascade robot arm and a 2-axis robot hand.
The 3-axis arm consists of 2 bent joints and a rotate joint; the 2-axis hand consists of a rotate
joint which controls the posture and a joint which achieves grasping objects. We use 24V geared
DC motor for the arm and MX-64R (Robotis series) as the steering engines for the hand. The
maximum length of the arm is about 800mm and it can grasp a 1000g object at maximum length,
which is enough for most household tasks.
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Fig. 3: Robotic Arm

Ball screw Actuator The bottom of the robot arm is fixed on the Ball screw Actuator so
that the arm can be raised or lowered freely, quickly and smoothly. The lift platform enables the
robot to manipulate objects of various height. Besides, it provides more workspace.

4 Software Engineering

4.1 Computer Vision

Computer vision is indispensable for tinker to accomplish multiple tasks including person recog-
nition, object manipulation and environment modeling.

Human Tracking For human tracking and following, we implemented the TLD (Track-Learning
Detection) algorithm([il]. TLD was proposed by Zdenek Kalal and is currently the state-of-art real
time tracking algorithm. It combine the traditional tracking and detection algorithm so that it
is more robust in consideration of distortion and partial occlusions. TLD algorithm consists of
three modules as its name indicated. Tracking module estimate moving direction of the object
according to the difference between two adjacent frames. Detection module detect the object
in each frame independently. Learning module integrate the results of the tracking module and
detection module to correct the detection errors and update the features of the target object.
We applied the TLD algorithm to human tracking and following tasks. Before the robot starts
following, the human partner to be followed will be asked to stand in front of Kinect and the
robot will record his/her features. When the instructor starts moving around, the robot will
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track and keep up with him. The robot also uses the depth information to keep away from the
instructor at a safe distance.

Face Recognition For human-robot interaction, a robot is required to recognize different mas-
ters or guests in home service. We developed a face recognition system with two process: enroll-
ment and recognition. During the enrollment process, a man is asked to stand in front of the
RGB camera. A face detector based on haar feature from OpenCV is applied and the detected
face will be stored. For a single person, the system stores 3-5 pictures. We used face++ API for
face detection and implemented the face recognition algorithm based on sparse representation
[2]. A redundant dictionary is trained offline using a set of training faces. The algorithm seeks
the most sparse representation coeflficient by solving a L1 optimization problem. The residual
errors for different classes (persons) tell who is the unknown person: if the residual error for a
specific class, for example, person A, is smaller than a specified threshold and the errors for other
classes are larger than another specified threshold, the newcoming person is identified as person
A. Fig.4 shows an example of the face recognition result. More details of this face recognition
pipeline can be found in [3].

Fig. 4: face recognition

Object recoginition Tinker uses a two-phase approach to recognize objects and precisely
manipulate them. In the first phase, a point cloud is built from the Kinect depth camera. Hough
transform and an entropy-based filter is applied to the point cloud to remove the backgroud.
Then a euclidean clustering will give the region of interest. A typical image of the filtered point
cloud is given below:



6 J Guo et al.

oty B 3 &= o) 1308 i

INFO] [1455858477.34748 find nothing

INFO] [1455858477.4 408]: find xiaololil, probability 6.716274
INFO] [1455858477.481053 find olil, probability ©.740872
INFO] [1455858477. ololil, probability ©.729866
INFO] [1455858477. 8 : olil, probability ©.782484
INFO] [1455858477. : fi ololil, probability 6.738620
INFO] [1455858477.88 { olil, probability ©.731268
INFO] [1455858477.9813988 1 ololil, probability 6.719214
INFO] [1455858478.081134 { oli1, probability @.724398
INFO] [1455858478.18018 1 ololil, probability @.731094
INFO] [145585847 4 { olil, probability @.721196
INFO] [1455858478.380308 1 ololil, probability 6.721145
INFO] [1455858478.486378 { oli1, probability @.728846
INFO] [145585847 8 1 ololil, probability 8.715123
INFO] [14558584 9444 { oli1, probability @.768714
INFO] [14558584 8 1 ololil, probability 6.750434
INFO] [14558584 6918]: fi oli1, probability @.728972
INFO] [14558584 81342794]: oli1, probability ©.718961
INFO] oli1, probability @.722593
INFO] [14 479. : oli1, probability 8.732202
INFO] [14 479.28 : oli1, probability @.735076
INFO] [14 479.3798 : oli1, probability @.748214
INFO] [14 479.47904 : oli1, probability @.741828
INFO] 6 : probability 0.736174
INFO] [1455858479.67978 { oli1, probability @.739751
INFO] [1455858479. 14 1 ololil, probability ©.798275
INFO] [1455858479.88 { oli1, probability ©.719807
INFO] [1455858479.9794 1 ololil, probability 8.735446
INFO] [1455858486. 8 { olil, probability @.727317
INFO] [1455858480. 1 6 1 oli1, probability @.742821
INFO] [1455858486.2838 : fi oli1, probability @.728367
INFO] [1455858486.38 1]: find xiaololil, probability 0.728815
INFO] [1455858486.479444891]: find xiaelolii, probability 0.719166
INFO] [1455858486. : 1 oli1, probability 8.720553
INFO] [1455858486. 82]: find xi 11, probability 0.723525
INFO] [1455858486. : fi ololil, probability @.743262

R e e e e 1 ) e 1 ) 1 1

©

®= | started core service [/resout]

Fig. 7: Objects found from the camera

® =
] !
w® 0 .
= fla.
P :f. ” k1 &
® o8
Fig. 5: Original image. Fig. 6: Filtered image.

In the second phase, the approximate location of object is given to the robot arm controller,
another usb camera placed in the hand of the robot arm will guide the arm to precisely manipulate
the object. First, the hand is moved to directly face the location of the region of interest at about
40 cm away. A similar image processing pipeline is used to find the object in the image given by
the camera in hand. After getting the image of the object, it is matched with the pre-captured
image set by convolution the image with the templates to find the best match. Precision of the
location found in this phase is significantly improved due to a much closer camera place. Then
the robot arm will be guided by the camera using a feedback procedure to place the object in
the middle of the camera image. Thus, the chance of missing the object is reduced.

For object classification, another image processing pipeline is implemented. We used YOLO9000
[@] for general object type detection. YOLO9000 is a light-weight while precise nerual network
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for genral object detection and classification. Then we implemented a bag of words model [6] to
pair the object image with those collected in the library.

4.2 Navigation

Simultaneous Localization and Mapping SLAM is one of the most important algorithms
for a mobile autonomous robot, which enables a robot to navigate and explore in an unknown
environment [B]. Mapping requires the robot to record, integrate and update the former informa-
tion it have got about the surroundings while Localization requires the robot to know the location
of itself refer to the estimated environment. Using a laser range finders (LRFs), we adopted the
SLAM package to estimate the robots location and its surroundings in the form of 2D occu-
pancy grid map. The raw data from LRFs are collected as the input of the algorithm. Features,
or landmarks are then extracted from the environment. When the robot moves around, these
features are used to estimate where it moves. It is called Laser-Scan-Matcher process. However,
the estimation of this process is imprecise and the error accumulates. The GMapping process is
adopted, using an EKF (Extended Kalman Filter) to correct the estimated result. Based on the
final map generated, the robot plans its path and explores the unknown environment. We also
implemented SLAM using color and depth camera, also called vSLAM [7], so that a 3D map can
be obtained, which is more precise in complicated environment. Building map using vSLAM is
still a experimental feature for tinker and needs further refining.

Navigation Navigation is one of the basic function that a mobile autonomous robot must have.
The robot needs to plan the route from its current position to the goal. An A* algorithm is used
to find the route considering both distance and collision avoidance. Moreover, the robot must
be able to handle unexpected obstacles when moving around. The navigation package is applied
and modified for the tinker robot. Parameters in the move base package are tuned and the
navigation task can be achieved functionally but the behavior and speed is far from satisfactory.
We extended a local which subscribes the origin global plan and linearizes the curve. In this way,
the whole processing could be more fluently. To avoid small objects and non cylinder-like objects
like chairs and cups on the floor, we use depth cameras including a kinect2 and a primesense to
build another local obstacle layer. Since pointcloud tend to be noisy, we filter this obstacle layer
to achieve more stable navigation performance.

4.3 Speech Recognition

Natural Language understanding provides a convenient way to interact with a robot. Currently,
we apply the CMU Sphinx package[g] for speech recognition. We update the keywords database
by adding necessary words and phrases for understanding different orders and compile it into a
library file. When the software recognizes a sequence of special keywords, the robot interprets
one’s intention and makes corresponding responses. For sound localization, we use the inner-build
microphone array in kinect.

5 Team repository

Our team repository can be found at https://github.com/tinkerfurod. The repository may
be of help to other teams by providing:

1. Implementation of all the algorithms and needed parameters described in the paper
2. Robot setup scripts and tools
3. Code for RoboCup@Home tasks
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6 3rd Party Dependencies

1. ROS

2. ROS Navigation stacK
3.

4.
5
6

Harknet(YOLO9000)

. Eensortiow

. face++ Face API
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