
Pumas@Home 2017 Team Description Paper

Jesus Savage, Marco Negrete, Jesus Cruz, Jaime Marquez, Reynaldo Martell,
Julio Cruz, Edgar Vazquez, Manuel Pano, Jose Cruz, Edgar Silva, Hugo
Estrada, Hector Arce, Mauricio Matamoros, Alejandro Garzon, and Oscar

Fuentes

Bio-Robotics Laboratory, School of Engineering
National Autonomous University of Mexico

http://biorobotics.fi-p.unam.mx

Abstract. This paper describes the service robot Justina of team Pumas
that has participated in the @Home category of the RoboCup and RoCKIn
international competitions; as well as our latest applied research. These
competitions had influenced our architecture in the development of bet-
ter systems for our service robots by developing RGB-D representation of
the environments; action planning using space state representation, and
low or null texture objects recognition using RGB-D cameras. In our
robotics architecture, the VIrtual and Real roBOt sysTem (VIRBOT),
the operation of service robots is divided into several subsystems, each of
them has a specific functionality that contributes to the final operation
of the robot. By combining symbolic AI with digital signal processing
techniques a good performance of a service robot is obtained.

1 Introduction

Service robots are hardware and software systems that assist humans to perform
daily tasks in complex environments, to achieve this: they have to be able to
understand spoken or gesture commands from humans; to be able to avoid static
and dynamic obstacles while navigating in known and unknown environments;
to be able to recognize and to manipulate objects and performing several other
tasks that a person might request.

Our team has been participated in the category @Home continuously since
the start of this competition at the RoboCup in Bremen in 2006. Our team
obtained the third place in Atlanta in 2007, and has reached the finals in 2014
and 2015, last year, in the Robocup 2016, the team got into the 2nd stage.

The paper is organized as follows: section 2 enumerates the hardware and
software components of our robot Justina; section 3 presents overview of the
latest research developments in our laboratory; and finally, in section 4, the
conclusions and future work are given.

2. JUSTINA’S ROBOTICS ARCHITECTURE

2 Justina’s Robotics Architecture

2.1 Hardware Configuration

Our service robot Justina, see figure 1, has the following hardware configuration:

Fig. 1: Robot Justina

ACTUATORS:

– Mobile base: Omnidirectional
through differential pair con-
figuration and omnidirectional
wheels.

– Manipulators: 2 x 7-DOF an-
thropomorphic arms with 10 Dy-
namixel servomotors each.

– Head: 2-DOF (Pan and tilt) built
with Dynamixel servomotors.

– Torso: 1-DOF (Elevation) through
a worm screw and a configuration
of gears.

– Speakers: Two speakers to gen-
erate synthetic speech.

SENSORS:

– RGB-D Camera: Microsoft’s
Kinect sensor

– RGB Camera: Logitech Pro
C920 Full HD.

– Microphone: Rode NTG2 direc-
tional microphone.

– Array of Microphones: An ar-
ray of four microphones to detect
sound sources.

– Laser: Hokuyo rangefinder URG-
04LX-UG0.

2.2 Software Configuration

Our software configuration is based on
the VIRBOT architecture [1], which
provides a platform for the design and
development of software for general
purpose service robots, see figure 2.
The VIRBOT architecture is imple-
mented in our robots through several modules that perform well defined tasks
[2], with a high level of interaction between them. The principal framework used

2

2. JUSTINA’S ROBOTICS ARCHITECTURE

for interaction is ROS, where a module is represented by one or several ROS’s
nodes. Also, for modules using the Microsoft operating system, we use our own
middleware called Blackboard to link them with ROS nodes running on Linux.
In the following sections are explained each of the layers of the VIRBOT system.

2.3 Inputs Layer

Fig. 2: Block diagram of the ViRBot architecture.

This layer process the
data from the robot’s
internal and external
sensors, they provide
information of the in-
ternal state of the
robot, as well as, the
external world where
the robot interacts.
In some of Justina’s
designs it has lasers,
sonars, infrared, mi-
crophones and stereo
and RGB-D cameras.
Digital signal process-
ing techniques are ap-
plied to the data pro-
vided by the internal
and external sensors
to obtain a symbolic
representation of the
data, as well as, to
recognize and to pro-
cess voice and visual
data. Pattern recog-
nition techniques are
used to create models
of the objects and the
persons that interact
with the robot. With
the symbolic repre-
sentation this module
generates a series of
beliefs, that represent
the state of the en-
vironment where the
robot interacts.

3

3. CURRENT RESEARCH

2.4 Planning Layer

The beliefs generated by the perception module are validated by this layer, it uses
the Knowledge Management layer to validate them, thus a situation recognition
is created. Given a situation recognition, a set of goals are activated to solve it.
Action planning finds a sequence of physical operations to achieve the activated
goals.

2.5 Knowledge Management Layer

This layer has different types of maps for the representation of the environment,
they are created using SLAM techniques. Also in this layer there is a localization
system, that uses the Kalman filter, to estimate the robot’s position and orien-
tation. A rule based system, CLIPS, developed by NASA, is used to represent
the robot’s knowledge, in which each rule contains the encoded knowledge of an
expert.

2.6 Execution Layer

This layer executes the actions and movements plans and it checks that they
are executed accordingly. A set of hardwired procedures, represented by state
machines, are used to partially solve specific problems, finding persons, object
manipulation, etc. The action planner uses these bank of procedures and it joins
some of them to generate a plan.

3 Current research

In this section is presented the current research developed in our laboratory to
improve the performance of our service robots.

3.1 RGB-D representation of the environments

For the construction of roadmaps, 3D data is used to find the occupied and
free space where a robot can navigate, it uses clustering techniques to find a
representation of them. The free space is found by separating the objects’ and
walls’ planes from the floor’s plane, that represents the space where the mobile
robot navigates. The RGB-D cameras provide information through a cloud of
points that represent the spatial position of each pixel of the captured image. In
this research, the RGB information provided by the camera is not used, for the
robot only collects 3D readings, R = {r1, r2, ..., rN}, rj = (xscreenj

, yscreenj
, dj) ,

where xscreenj
, yscreenj

represent the pixel location in the captured image and dj
the distance to the objects in line of sight. Then qj = (xj , yj , zj), represents the
spatial positions of the objects’ points relative to the Kinect’s position, mounted
in top of the robot’s mechatronic head.

4

3. CURRENT RESEARCH

The number of points captured by a 3D sensor in just one picture is immense,
around 300,000 points, thus, it is necessary to compress the 3D data to a min-
imum, to be able to find a proper representation of them. For this, clustering
techniques are used, vector quantization (VQ), which also they help to partition
the free space into regions, and the centroids of the regions become the nodes of
a roadmap, that is used by a mobile robot to navigate.

Given a set of Nv vectors, qj = {xj , yj, zj}; j = 1, ..., Nv that represent the
position of the cloud points a set of centroids which represents these vectors is
found. A collection of centroids is called a codebook. The codebook is designed
from a long training sequence that is representative of all vectors qj to be encoded
by the system. A modified VQ algorithm for 3D [3] data is as follows:

– 1. Find an initial codebook D1, with one centroid C1, by averaging all the
vectors qj , with L = 1 and m = 1.

– 2. Modify each of the centroids Ci; i = 1, ..., Lm in Dm by adding them a
vector ±ψ of small magnitude to generate 2 new centroids from each of them,
generating a new codebook Dm+1, and Lm+1 = 2 ∗ Lm, m = m+ 1.

– 3. Given a codebook Dm = Ci; i = 1, ..., Lm assign each vector qj into the
clusters Rk whose centroid Ck is closer to qj according to some similitude
measurement dj = d(qj , Ck). The measurement used is the Euclidean dis-
tance between two points.

– 4. Recompute the centroids Ck for each of the clusters, Rk, by averaging all
the vectors qj that belong to Rk.

– 5. If the difference between the average distance d̄t = 1

Nv
Σd(qj , Ck), in

iteration t, between vectors qj and their corresponding centroids Ck, and
the previous average distance d̄t−1, |d̄t − d̄t−1| ≥ ǫ, go to 3.

– 6. If Lm < codebook size go to 2.

Where codebook size is the number of regions of the environment. Figure 3
shows in the left side the original RGB image captured by the Kinect, in the
center it is shown the free space clusters in green and the occupied space clusters,
in purple, the black regions are those points with no depth information. In the
right it is shown the resulting environment representation. Green dots represent
the nodes, free space centroids, used to build the roadmap and calculate a path.
Purple rectangles represent obstacles and the red lines are the path calculated
by Dijkstra algorithm to reach the goal point, also colored in red.

To obtain real time performance the VQ algorithm was processed in par-
allel in a GPU programmed with CUDA, it was also implemented the whole
process sequentially, using C++, to compare processing times and to test the
effectiveness of the parallel implementation. Table 1 shows the results obtained
comparing the VQ implementation in parallel and in sequentially of the environ-
ment’s 3D data. As we can see for the results shown in this table, the parallel
implementation of the VQ algorithm is in average 17 times faster than the se-
quentially one, thus this technique can be used by the robot in real time when
it navigates.

5

3. CURRENT RESEARCH

Fig. 3: Left: Original RGB image captured by the Kinect. Center: Free space
clusters and occupied space clusters. Right: Resulting environment representa-
tion.

Sequential Time [s] Parallel Time [s]

1.341 0.078
1.373 0.078
1.341 0.078
1.388 0.077
1.357 0.078

Table 1: Comparison of processing time for serial and parallel implementations
of the VQ algorithm.

3.2 Action planning using space state representation

VIRBOT’s task planning uses concepts from space-state search planning and
hierarchical task networks, as the ones used in classical STRIPS-like planners.

The plan is generated by an inference engine, CLIPS, that it uses a set of
rules that represent a hierarchical structure of tasks. The planning rules are
useful for considering different situations, present in the environment, so that
the robot can act accordingly. The mechanism to generate a new plan starts
with a spoken command, the representation of it triggers a set of rules that
generate the plan. The spoken commands representation is defined by performing
a syntactical analysis and a semantic interpretation of them using a natural
language technique called Conceptual Dependency [4]. The Robot is able to
perform atomic operations like grasping an object, moving itself from on place
to another, finding humans, etc. Then the objective of action planning is to find
a sequence of this atomic operations to achieve the desired goal.

This research was evaluated under the General Purpose Service Robot (GPSR)
test of the @Home category, and after generating 30 random commands of the
set of commands of this test, the robot was able to accomplish, trough action
planning, the required actions contained in the solution of the plans, shown in
table 2.

3.3 Low or null texture objects recognition using RGB-D cameras

Currently, several robust techniques based on feature extraction and description
exist for object recognition. However, if the objects are low textured, only a few

6

3. CURRENT RESEARCH

Type of actions Percentage of success

Navigation 75
Object Recognition 59
Face Recognition 72
Object Handling 42
Answering questions 87

Table 2: Action planning success

number of features can be extracted, making the matching process unreliable.
For these cases, we developed a method that combine three characteristics of the
objects: color, size and shape, after a 3D detection and segmentation in a plane
for each object.

Color information is extracted from the HSV space of the object’s RGB pixels
and it is represented by the histogram of the Hue components.

The size and shape is estimated from the object’s point cloud, which are
obtained using an oriented bounding box (OBB) of the points cloud. The shape
is characterized using the Hu Moments [5] of the convex hull calculated from the
points projected over the plane below them. Thus, with these representations
an histogram is obtained for each of the objects and for the recognition process
we compare the objects’ histograms with the histogram of the object to be
recognized.

The histograms are compared using histogram intersections, [6]:

H(I,M) =

∑n

j=1
min(Ij ,Mj)

∑n

j=1
Mj

(1)

Where I is the histogram of the object to be recognized, M represents one
of the stored objects’ histograms and n is the number of bins in the histograms.

This method has been tested experimentally, showing fast and robust results
for changes in light, scale, and rotation in a plane parallel to the plane below the
object. Figure 4 shows an example of objects’ recognition on a shelf (multiple
planes).

Table 3 shows the results obtained by comparing this histogram method with
a SIFT algorithm for 25 objects without or almost no texture.

System % Recognized % No recognized

Proposed 91.333 7.666

SIFT 22.333 77.666

Table 3: Comparison of recognition of objects using color, size and shape his-
tograms and SIFT.

As we can see for the results on table 3 this technique outperforms the SIFT
one.

7

4. CONCLUSIONS AND FUTURE WORK

(a) Objects can be segmented even with
occlusions.

(b) Point clouds corresponding to each seg-
mented object.

Fig. 4: Example of object segmentation on several planes.

4 Conclusions and future work

It is clear, that during the 10 years in which our team Pumas has been partici-
pated in the RoboCup and 2 years in the Rockin [7] in the category @Home, the
performance and research developed, in the service robot area, in our laboratory
has been improved considerably. Our service robot architecture, the VIRBOT,
has been evolving according to the requirement that these robotics competitions
asked each year. In these years, the full system has been improved, both in hard-
ware and software, having reliable performance and showing promising results.
Particularly, this year, we have a new omnidirectional mobile base for navigation
and a new torso. In terms of software, we have change the way of conceiving the
tests of the competition: from static state machines to inferred action planning
generated by a rule based system. As for future work, the computer vision al-
gorithms will be improved by using Hidden Markov Models (HMM) to have a
better recognition of objects and persons. Also, it will be explored fault tolerant
systems to help the robot to recover from failures.

References

1. ViRbot: A System for the Operation of Mobile Robots, Savage, Jesus and et al,
RoboCup 2007: Robot Soccer World Cup XI, pp 512-519, Springer Berlin Heidel-
berg, 2007.

2. The Design of Intelligent Agents: A Layered Approach, Muller, Jorg P,Springer-
Verlag New York, Inc.1997.

3. Parallel implementation of roadmap construction for mobile robots using rgb-d cam-

eras, Marco Negrete, Jesús Savage, Jesús Cruz, and Jaime Márquez, OGRW2014,
pages 184–187, 2014.

4. Conceptual dependency and its descendants, Steven L. Lytinen, Computers & Math-
ematics with Applications, 1992.

5. Visual pattern recognition by moment invariants, Ming-Kuei Hu, IRE Transactions
on Information Theory, 8(2):179–187, 1962.

6. Color indexing, Michael J Swain and Dana H Ballard, International journal of com-
puter vision, 7(1):11–32, 1991.

7. http://rockinrobotchallenge.eu/home.php

8

