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Abstract. This paper provides a description of the team Alle@Home
from the Institute for Cognitive Systems from the Technical University of
Munich. Our goal is to participate for the first time in the RoboCup@Home
2017 competition with the robot TIAGo as part of the open platform
league. Our team has special focus on novel semantic reasoning methods
which enables the recognition of human intentions and it also improves
the perception, control, and navigation systems. Currently our robot can
handle incomplete information, for example if the operator asks for a cola
and the robot only finds a fanta, this found object will be given to the
operator as an alternative drink. This solution is possible due to our
proposed reasoning engine.

1 Introduction

The main research interests of our team include cognition, mobile manipula-
tion, computer vision and human robot interaction (HRI). The team consists of
Bachelor, Master and PhD students who are advised by postdoctoral researchers
and the university’s professor. The team serves as a means for students to inte-
grate their academic project work into a well-functioning robot control software
system in real scenarios.

The code implemented for the demonstration shown for the qualification
video can be found in the following repository:

https://gitlab.lrz.de/Robocup atHome ICS/Challenges.git
The link to our team qualification video is https://youtu.be/A45ZCIzzkww

2 Team Alle@Home

The Institute for Cognitive Systems (ICS) offers students the practical course
called RoboCup@Home1 where the students can directly interact with the robot
and face real problems while learning different methods. This helps to enhance
the abilities of a robot2. In the scope of these courses the students design, develop

1 https://www.ics.ei.tum.de/robocup-athome/course/
2 We are using the robot TIAGo for our experimental validations
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and test new software components and try them out in the robot. The practical
courses are supervised by postdoctoral researchers as well as by PhD candidates.
The current team is supervised by Gordon Cheng and is led by Karinne Ramirez-
Amaro.

Fig. 1. Members of the team Alle@Home. From left to right and from top to bottom:
Prof. Gordon Cheng, Dr. Emmanuel Dean, Dr. Karinne Ramirez, Emilia Lozinska,
Gasper Simonic, Qiuhai Guo, Dr. Pablo Lanillos, Ilya Dianov, Wibke Borngesser, Ro-
gelio Guadarrama, German Diez Valencia, Ethan Rosentreter, Xiao Wang, Patrick
Grzywok, Jianxiang Feng.

The intention of the new practical course is that each year new students par-
ticipate and get engaged in the development of the software of service robots such
as TIAGo. The students from Fig. 1 are the first generation of the new practical
course and now form part of team Alle@Home, which intents to participate in
the RoboCup@Home 2017 for the first time.

2.1 Focus of research

Our team mainly focuses on deploying and improving robot capabilities through
a cognition layer. This layer, in combination with state-of-the-art perception
and navigation techniques, gives the robot the ability to handle complex sce-
narios when incomplete information appears. To this end, different new skills
are added to our new robot TIAGo (e.g. reasoning, object recognition, naviga-
tion, manipulation, speech recognition, etc.), under the control of a semantic
inference engine. Therefore, our robot can have improved decision making [1–3],
task learning abilities [4], and contextual navigation [5]. This approach suits the
challenges defined for the RoboCup@Home competition where the robot should
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decide what to do depending on the information perceived from the environment.
For instance, if a user asks for orange juice, the robot infers that it should go to
the kitchen and, in the case of not finding the requested juice, the robot decides
to bring something similar to the operator. Furthermore, as a second goal the
team is researching on new perception systems based on deep neural networks
enhanced with reasoning.

3 Technology and Scientific Contribution

In the context of the RoboCup@Home competition, we have developed a frame-
work that integrates different capabilities in the service robot TIAGo (see Fig. 2).
These capabilities are reasoning and knowledge representations, object recogni-
tion, navigation, kinematic control, speech recognition and face detection. With
the developed framework the robot TIAGo is able to learn and recognize the
operator, receive a command from an operator, navigate to the inferred loca-
tion where objects are most likely to be found, find the requested or a similar
object among other objects, grasp the desired object while at the same time
avoiding obstacles, and finally give back the object to the operator. In the next
subsections more description of this capabilities are described.

Fig. 2. Illustration of the technologies and scientific contributions in Alle@Home. The
red square represents our main research focus. The red and green squares are the
modules already implemented in the robot TIAGo and the blue squares represent the
modules we are planning to include for the final competition.

Reasoning and Knowledge The main benefit of using knowledge and rea-
soning engine is that our robot can handle incomplete information [2]. The rea-
soning system focuses on modeling the environment with the knowledge base
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and improving TIAGo’s performance by using logical inference. The main prob-
lems tackled by the cognition system are to infer new solutions while performing
tasks, and storing knowledge acquired during execution. For this, description
logic is used as the reasoner and an ontology is used for the knowledge repre-
sentation [1]. This enabled a distinction between general rules and specific facts
learned during execution. Methods for creating specific facts have been imple-
mented as a set of ROS services and Prolog predicates through the KnowRob
(Knowledge for Robots) system [6]. They provide the tools to create instances
of objects, assert properties and infer some knowledge about the system. For
example, to infer the possible storage places for objects, a Prolog predicate was
created3 which retreives the necessary information from the knowledge-base (see
Fig. 3.d). It searches for the storage places for objects (e.g. refrigerator for food)
and possible types of rooms where the objects can be stored (e.g. kitchen for
refrigerator).

Object Recognition As a first approach, we have integrated the package
find object4 which recognizes objects in 2D using SURF descriptors and by means
of the depth information provided by the RGBD sensor, the 3D centroid on the
optical camera frame is computed [7]. Afterwards, the centroid is transformed
into the base coordinate system, whose origin is defined as the centre of the bot-
tom of the robot. We define the object pose by the centroid and a fixed rotation
angle, see Fig. 3.a. Our next approach includes the integration of 3D descriptors
as Fast Point Feature Histograms (FPFH) and deep learning techniques such as
tensorflow5. This implementation has been partially implemented in the robot
to improve the robustness of the recognition of objects6. However, their perfor-
mance has not yet achieved enhancement over the baseline approach and we are
still validating this approach. Furthermore, we have integrated face recognition7

and people detection8 using Histogram of Oriented Gradients (HOG) descriptors
and Support Vector Machine (SVM) classifiers. Further enhancements are being
pursued.

Object Manipulation In order to compute the trajectory of the robot’s arm
to grasp the object we use Moveit! in combination with an octomap for colli-
sion avoidance9. The depth data is used to build the octomap that encodes the
spatial restrictions of the workspace. Then the Movit! planner computes a feasi-
ble trajectory. For this, we use the OMPL (Open Motion Planning Library) [8]
which is a free library for the planning of movements in MoveIt!. The goal of the
sample-based motion planning is to find a collision-free path between the starting

3 https://gitlab.lrz.de/Robocup atHome ICS/Challenges/.../17 alle atHome sw/src/robocup reasoning
4 https://github.com/introlab/find-object
5 https://www.tensorflow.org/
6 https://gitlab.lrz.de/Robocup atHome ICS/Challenges/.../17 alle atHome sw/tflow
7 https://gitlab.lrz.de/Robocup atHome ICS/Challenges/.../17 alle atHome sw/src/tumgo face recognition
8 https://gitlab.lrz.de/Robocup atHome ICS/Challenges/.../17 alle atHome sw/src/people detector
9 https://gitlab.lrz.de/Robocup atHome ICS/Challenges/.../17 alle atHome sw/src/tiago moveit config
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state of the robot and the target state. The search takes place within a physical
workspace, the limitation of which is an obstacle for the robot. The state space
of the robot consists of all its possible configurations within the working area.
A single point in this space is a possible condition. The difficulty of solving the
problem lies in the many degrees of freedom of the robot, which requires a high
dimensionality of the state space. For example grasping something is considered
as a redundant task for a 7 DoF arm in the robot TIAGo.

Fig. 3. Expample of the implementations on the robot TIAGo.

Navigation We enhanced the standard ROS navigation stack. For building the
map we use gMapping with Rao-Blackwellization and AMCL for localization.
First, the robot should localize itself by rotating around to guess about where it
is respect to the map of the room. For this, we use the AMCL (Adaptive Monte
Carlo Localization) with laser scanner data. This navigation module has been
improved by including the interaction with the reasoning system, then the robot
can navigate to the new desired place where objects are most likely to be found.
For example, if the user ask for a fanta, the robot should go to the kitchen,
this information is be provided by the reasoning system10. For the global and
local planner we use the one provided by PAL. Our robot successfully avoids
obstacles while navigating towards the goal. Currently, we are also integrating
an optimized contextual navigation to provide prior knowledge about the envi-
ronment to the robot in order to optimize its navigation. For instance, in order
to look for the operator the robot can use its latest available information about
the operator position to navigate through the regions with higher probability.
This method can optimize a function that maximizes the probability of detecting
the object being pursued [9]. This kind of techniques are easy to combine with
the cognitive layer as prior knowledge which can be constructed from acquired
behaviors of the user to enable a contextual navigation system [5].

10 https://gitlab.lrz.de/Robocup atHome ICS/Challenges/.../17 alle atHome sw/src/tumgo navigation
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Speech Recognition We have integrated the CMUSphinx toolkit which is a
leading speech recognition toolkit for speech applications. We use this system to
better communicate with the robot and make the interaction more natural.

Learning by Demonstration Allowing robots to recognize activities through
different sensors and re-using its previous experiences is a prominent way to
program robots. For this, we propose a recognition method that is transferable
toward different domains independently of the used input sources. One key com-
ponent for such generalization is the definition of common representations. We
propose a hierarchical approach to extract the meaning of demonstrations by
means of symbolic and semantic representations [10]. These symbolic represen-
tations are used to generate a semantic reasoning engine to transfer the obtained
models among different domains [3]. Our reasoning-based learning system allows
robots to re-use their previous experiences to correctly segment and recognize
new Kinesthetically demonstrated activities for different tasks [11]. This module
is under development and it is planned to be fully implemented for the compe-
tition to teach the robot new tasks on-demand.

Task Learning With increasing complexity of the robot environment the ac-
quisition of the new tasks can be a very time consuming process as a robot has
to obtain a new task every time its environment changes. In order to improve
and accelerate task acquisition, we introduce a new method to teach robots new
tasks in a fast and efficient manner by extracting key structures from the demon-
strated tasks and utilising contextual knowledge from previous experience [4].
The extracted structure is represented as a directed graph, which allows to cap-
ture important relationships between task components and simplifies the search
of known tasks. Additionally, we connect the obtained task graph with an on-
tology to enhance the generalization of our method to make it applicable across
different domains. This module is also under development and it will be use for
the competition.

4 Conclusion

This document presents the description of the technological and scientific con-
tributions of our team Alle@Home from the Technological University of Munich.
Our service robot TIAGo has different capabilities such as reasoning & knowl-
edge, object recognition, face and person identification, navigation in dynamic
environments, human-robot-interaction, speech recognition. We believe that the
contributions of our team as part of the RoboCup@Home competition will be
beneficial to the robotics community.
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7. Labbé, M. Find-Object. http://introlab.github.io/find-object, 2011. ac-
cessed 2017-03-10.

8. Ioan Alexandru Sucan, Mark Moll, and Lydia E. Kavraki. The Open Motion
Planning Library. IEEE Robot. Automat. Mag., 19(4):72–82, 2012.

9. Pablo Lanillos, Eva Besada-Portas, Jose Antonio Lopez-Orozco, and Jesus Manuel
de la Cruz. Minimum time search in uncertain dynamic domains with complex
sensorial platforms. Sensors, 14(8):14131–14179, 2014.

10. Karinne Ramirez-Amaro, Emmanuel C. Dean-Leon, and Gordon Cheng. Robust
semantic representations for inferring human co-manipulation activities even with
different demonstration styles. In IEEE-RAS International Conference on Hu-
manoid Robots, pages 1141–1146. IEEE, 2015.

11. Emmanuel Dean, Karinne Ramirez-Amaro, Florian Bergner, Ilya Dianov, Pablo
Lanillos, and Gordon Cheng. Robotic technologies for fast deployment of in-
dustrial robot systems. In 42nd IEEE Industrial Electronics Conference (IEEE
IECON2016). IEEE, October 2016.



8 Authors Suppressed Due to Excessive Length

Robot TIAGo Hardware Description

Fig. 4. Robot TIAGo

TIAGo has the following hardware description:

– Base: Differential drive system, max speed 1 m/s,
2 DoF.

– Torso: Lift stroke (1 DoF), 35 cm.
– Arm: Motor current feedback, mounted on torso.

4 DOF, Maximum load: 2 kg. Reach 87 cm.
– Wrist: Force/Torque sensor, 3 DoF.
– Head: 2 DoF, RGB-D camera.
– Gripper: Parallel gripper, 2 DoF.
– External devices: Laser range-finder, sonars, IMU,

stereo microphones.
– Robot dimensions: height: 1.10m-1.45m, Base foot-

print 54 cm.
– Robot weight: 72 Kg.
– Battery: 36 V, 20 Ah.
– On board computer: CPU Intel(R) Core(TM) i5-

4590S @3.00GHz, 4GB RAM, 60 GB.
– External laptop: CPU Intel(R) Core(TM) i7-4510U

@2.00GHz, 8GB RAM, 250 GB SSD.

Robot’s Software Description

The software that we use to control the robot TIAGo is as available in the
following repository:

https://gitlab.lrz.de/Robocup atHome ICS/Challenges.git

Some of our implementations are based on the PAL TIAGo tutorials:
https://github.com/pal-robotics

Here is a summary of the implemented software:

– Platform: Ubuntu 14.04 Operating System
– Reasoning and Knowledge: Description logics and ontology, refer to [1–3].
– Navigation, localization and mapping: ROS Navigator with Reasoning.
– Face and people recognition: Histogram of Oriented Gradients (HOG) de-

scriptors and Support Vector Machine (SVM) classifiers.
– Speech recognition: CMUSphinx toolkit
– Speech generation: Text to Speech Acapela.
– Object recognition: Package find object.
– Arm control and hand coordination: ROS-control and Moveit! in combina-

tion with octomap.


