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1 Preamble

At the time of submission, we are still waiting
for delivery of the Toyota HSR robot. It took
a long time to settle legal issues around the
contract, but this has finally been concluded
and we hope the robot is shipping now.

This team description paper is accompa-
nied by a video demonstrating some of our
capabilities on a makeshift platform, shown
in Figure 1, put together specifically for
this demonstration. The video also includes
demonstrations on a variety of other plat-
forms, showing what we intend to integrate
into the HSR.

The demonstration platform consists of a
Segway RMP base, with a torso mounted on
top, supporting a Jaco arm and an Asus Xion
RGB-D camera. Navigation uses to Hokuyo
laser rangefinders, one mounted low for obsta-
cle detection and one mid-way up. The robot
is controlled by an onboard laptop running

Fig. 1. Segway RMP base with
Jaco arm

ROS. The system includes the following ROS nodes:

— A SLAM module, base on our system for rescue robots

— Speech recognition and text-to-speech
— Moveit for controlling the arm

simple object detection with the Asus
A planner

2 Introduction

The University of New South Wales (UNSW) has a long history in RoboCup
soccer and rescue leagues. Our main research focus in all of our participation in
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RoboCup has been on the AT underpinning intelligent behaviours. RoboCup@Home
SPL with the Toyota HSR robot fits very well with our research focus, as the
@Home competition demands more high-level reasoning and learning than any
other league. The research conducted in the School of Computer Science and En-
gineering and the Creative Robotics Lab spans many areas including: cognitive
architectures, machine learning for perception and robot behaviours, human-
robot interaction (including conversational and multi-modal interaction), SLAM,
and cognitive robotics. The diversity of our research gives us a good understand-
ing of how to build a complex robot and we are experienced in integrating sys-
tems ready for competition, and in releasing our code as open source software.
We also have unique expertise in the Creative Robotics Lab, which is dedicated
to research in human-robot interaction and social robots.

UNSW has a distinguished record in RoboCup, winning the RoboCupSoccer
4-Legged League in 2000, 2001 and 2003, and the RoboCupSoccer SPL in 2014
and 2015. Overall, our teams have ranked in the top three places in 70% of the
competitions in which we have participated. In RoboCupRescue, we won the
best-in-class autonomy division in 2009 - 2011. We also received a special award
for human-robot interaction in 2009 and won the mobility challenge in 2010.

Much of the software developed for RoboCupRescue is also applicable to
@Home, as it combines sensing, locomotion, manipulation, navigation, decision
making and learning. It shares many of the same problems as RoboCup@Home,
but @Home adds much more human-machine interaction and social robotics,
which is where our current research is directed. Interaction between the rescue
and @home leagues can be bidirectional as there is also potential for research
in @Home to feedback into rescue, particularly if the rescue competition adds
mixed teams of humans and robots.

A standard platform for @Home SPL is attractive because of the advantages
to be gained from sharing software. Experience in the soccer SPL, in which
teams publicly release there code each year, is that progress across the league is
accelerated through code sharing.

3 Background

We have a substantial code base inherited from the RoboCupRescue Real Robots
competition and other research. The software is built around ROS and has been
ported to run on a variety of platforms including robots with different drive mech-
anisms, sensors and arms. The existing software includes SLAM and autonomous
navigation; multi-modal interaction for conversational agents; and software for
object recognition and simple grasping. We will also incorporate our current re-
search in cognitive hierarchies and resource constrained planning and reasoning.
The remaining components, such as inverse kinematics for manipulation, and
face recognition will be derived from existing open source software.
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3.1 SLAM and Navigation

Our GPU accelerated 3D SLAM software for mapping and navigation [1] has
been ported to our own experimental @Home platform and will be ported to the
HSR. The SLAM system was developed to handle the complex terrain of urban
search and rescue, such as going up and down stairs and navigating over uneven
flooring. It avoids temporary obstacles, such as human occupants moving around.
Some adaptation is required to deal with furniture, glass and mirrors. The nav-
igation system includes exploration for mapping, as well as path planning [2].
This will be adapted to handle path planning that arises from interactions with
humans.

3.2 Conversational Agent

A conversational agent was originally developed as part of a project to create a
“smart home” [3]. The occupants interacted with devices in the home by speech
and gestures. The system was also equipped with cameras to track motion, which
was used to detect falls. Occupants were able to talk to the room and ask for
devices to be turned on and off and to control television sets, audio systems,
ask questions answered from the web, etc. The system consists of a scripting
language for the dialogue and interacts with devices through a blackboard sys-
tem. Each device is controlled by its own software agent that interacts with
other agents, including the dialogue manager, through a blackboard. This sys-
tem has been ported to robots in our lab, adding planning agents and other
components needed for robot control. Agents interact with ROS nodes through
the blackboard mechanism.

3.3 Robot Control and Reasoning

Our team includes experts in knowledge representation and reasoning (KRR),
action logics, teleo-reactive programming, epistemic reasoning, and belief revi-
sion. This research is relevant, not only because of the planning required for the
robot, but also because it must also be able to cope with incomplete or inaccu-
rate statements from humans. For example, the human may ask for the red cup
on the table when, in fact, there is a red plate and a blue cup. What should it
do? We have worked to bring the theory of KRR to practice, helping develop
ROSoClingo [4], an adaptation of a high-performance Answer Set Programming
reasoner for use in ROS. We are implementing high-level reasoning and task
planning in ROSoClingo.

3.4 Object Recognition

We have developed model-based approaches to 3D object recognition using RGB-
D cameras. The vision system extracts shape primitives (e.g. planes and cylin-
ders) from the point cloud. A relational learning system then builds a description
of the object class based on the relationships between the shape primitive [5].
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This method has been used in the rescue environment to recognise staircases and
other terrain features. Once a model of the object is created, it is imported into
a simulator, like Gazebo, which allows the robot to “visualise actions” before
executing them in the real world. We investigating similar approaches to ‘logical
vision” for object detection and modelling approach in the @Home SPL.

3.5 Externally available components

Other components are derived from existing open source software. As we work
in the ROS framework, we can readily incorporate open source packages that are
also built in ROS. We use the Movelt or GraspIT ROS packages for calculating
inverse kinematics and performing manipulation tasks. For face recognition and
person tracking we use tools in OpenCV 3.0, and the OpenNI/NiTE skeleton
tracking library.

4 Research

One of our main research foci is on combining high-level reasoning with real-time
low-level sensing and control to improve the capabilities of autonomous robots.
Our long-term aim is to develop general-purpose intelligent systems that can
learn and be taught to perform many different tasks by interacting with their
environment. In the course of our research, we have created software that can
be ported to the Toyota HSR for the RoboCup@Home competition. Below, we
highlight the current focus of our research, and our key innovative technologies
and scientific contributions.

4.1 Cognitive Architecture

We wish to better understand how a variety of software components should be
integrated in a robot. We have developed a novel meta-model for formalising
cognitive hierarchies [6]. A cognitive hierarchy consists of a set of nodes con-
nected in a hierarchical graph. Every node in the hierarchy has a world model
and behaviour generation at a particular level of abstraction, with the lowest-
level node as a proxy for the external world. Cognitive hierarchies described
using this model are modular in design and allow the integration of symbolic
and sub-symbolic representations in a common framework. The model has been
demonstrated on several platforms including a Baxter robot, which incorpo-
rates a simulator as its world model, allowing the system to “visualise” the
effects of actions before executing them in the real world. For the TMC HSR
RoboCup@Home SPL robot we will use this system, implemented over ROS, as
the basis for integrating the different components in a single architecture, from
SLAM and robot navigation through to high-level behaviour generation.
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4.2 Human-Robot Interaction and Trust

Human-robot interaction may include speech, sound, music, gestures, body move-
ments, proximity, facial expressions, body language and touch. Poorly designed
interactions decrease the willingness of a human to use the robot. Our research
alms to improve human-robot interaction by studying two areas, physical ele-
ments of human-robot interactions and the ability of the robot to learn from and
adapt to new dynamics of the interaction.

The physical components of human-robot interactions we study are touch,
gesture, and recognising human emotions through micro and macro human ex-
pressions, and the manner in which a robot approaches a human. [7] The goal
is to prevent the human from being surprised or fearful of a robot’s actions. We
use machine learning to alter how the robot behaves and interacts so that the
human can teach the robot how they wish to interact, explaining aspects of the
interaction they prefer or dislike, find uncomfortable or confronting.

An associated concern is how trustworthy humans regard a robot, especially
when they can learn and adapt to new situations. We are studying the change
in trust for a mixed initiative task under varying degrees of transparency of
the adaptation process. The cognitive architecture mentioned above includes the
ability for the robot to adapt to a change. It is implemented on a Baxter robot for
a mixed initiative problem solving task where the environment changes, requiring
the robot to adapt on the job. This also requires modelling and evaluating the
evolving human-robot trust relationship as the robot learns.

For our research in Human-Robot Interaction we are constructing a National
Facility for Human-Robot Interaction Research, due to open in early 2017. It
will be a state-of-the-art facility for non-intrusive real-time measurement of the
properties that are linked to human affect and intent.

4.3 Position Tracking and SLAM

We developed our own robust position tracking and SLAM algorithms [2], origi-
nally for RoboCupRescue, but which are also used on robots in our office space. A
recently completed PhD student improved and re-implemented these algorithms
to make use of a GPU using full 3D information to produce correctly aligned
and accurate 3D maps [1]. Much of this work carries across to RoboCup@Home,
since accurate 3D position tracking and mapping for navigation and obstacle
avoidance through the home. Combined with our work on spatial reasoning, this
also assists in planning and model-based object recognition.

4.4 Robot Learning

UNSW was known for its work in machine learning well before we began working
in robotics. In fact, one of the main motivations for entering robotics is that it
is such a rich source of data and problems that can be solved by learning. We
have developed methods for learning how to traverse difficult terrain by learning
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from demonstration and through trial-and-error [8]. We combine learning ab-
stract qualitative models with reinforcement learning, where the abstract layer
constrains search in the lower-control layer to greatly, reduce the number of trials
required. As mentioned earlier, we also make extensive use of machine learning
in perception.

4.5 General Game-Playing Robots

Our group also has a history of success in General Game-Playing (GGP) com-
petitions, and this expertise extends to robotics. Many domestic robot tasks
have game-like properties, requiring the robot to reason about the goals of other
agents as well as adapting to unexpected changes in the environment [9]. For
example, a domestic robot tasked with fetching an item has to consider the pos-
sibility that the item may not be where it expects, or that the human operator
may change locations after issuing the request. Viewing such a task as a game
can provide a framework for improving robot behaviours.

5 Experiments and Results

In lieu of results obtained using the Toyota HSR, we briefly list some experiments
conducted on other platforms

5.1 Human-Robot Interaction

Several conversation agent systems have been
developed to interact with smart homes and
robots. The system shown in Figure 2 is a
speech operated robot arm that can be in-
structed to pick up objects of different colours
and shapes. Each device is controlled by its
own software agent, which posts messages to
and reads from a blackboard.

The same conversational agent architec-
ture has been used to control a smart home
(demonstrated in the accompanying video). Fig. 2. Backboard for conversa-
Here, the agents attached to the blackboard tional agent
control devices such as lights, the TV set, a
radio and the home PC. Sensors include cameras and microphones monitoring
a space. The system is capable of multi-modal interaction, combining gesture
recognition with speech and can also perform safety monitoring, e.g. fall detec-
tion.

The conversational agent has been deployed in Sydney’s Powerhouse Museum
as a guide to its display on computing technology and its history. This installation
was a valuable lesson in developing robust systems for the public. We learned that
as long as visitor are cooperative and interested in learning about the museum,
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the system works well. However, we did not anticipate that the majority of
visitors to the museum are school children whose main intent is to break the
system! Thus, the system must be able to recover from unexpected interactions.
Following that experience, the later software (FrameScript) provides mechanism
for building recovery modes into the interaction.

5.2 Position Tracking and SLAM

Crosbot is the name of the SLAM system that
has been under development for many years
for the rescue robot competition. The UNSW
team received the “best-in-class” award for
autonomy three time, largely due to the ac-
curacy of the maps. Most recently, these algo-
rithms have been redeveloped to run on GPUs
to speed up execution and to relieve the CPU
of this work, enabling it to be used for other Fig. 3. 3D Map
computations.

The original 2D SLAM was extended to create 3D maps, fusing information
from LIDAR and RGB-D cameras, as shown in Figure 3.

5.3 Robot Learning

Much of the research conducted by the UNSW
team is focussed on robot learning. As de-
scribed above, there has been a significant
amount of work done on learning how to
traverse irregular terrain, including climbing
stairs [8].

Another current project gives the robot
the ability to learn how to use objects as
tools [10]. This uses symbolic machine learn-
ing methods to build theories of how objects
of different shapes interact with other objects
and reasoning about how to position and move
them so that the object selected as a tool can allow the robot to complete a task
that that it could not otherwise do, .e.g. using an object as a hook to pull an-
other object out of a narrow space. The perceptual system builds models that
are imported into a physics simulator, which is used to “visualise” actions before
they are executed, thus extending the robot’s planning capabilities.

Fig. 4. Learning to use tools

6 Conclusion and Future Work

As our RoboCupSoccer SPL teams have done over many years, we will make our
software available to other research groups and teams competing in @Home. We
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are in the process of making our recently developed GPU-accelerated 3D SLAM
publicly available as a ROS package. In addition, as a part of our involvement
in @Home, we intend to publicly releasing the software (CrosBot) that we have
developed in ROS for RoboCupRescue and which will be extended for use in
RoboCup@Home.

All our research and development uses real robots. We have recently begun
a collaboration with Fuji Xerox in Japan to investigate how intelligent social
robots could be introduced into the workplace. The investigation will focus on
the benefits that social robots could provide to employees, such as improving
office well-being and productivity. Aspects of the investigation include studying
human-robot interaction as the robot must understand and respond to requests
in a manner that is comfortable for each user, incorporating real-time learning
capabilities in the robot so that workers can teach the robot how they wish to
interact with them or the ability for workers to teach the robot how to perform
new tasks.
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