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Abstract. It is challenging to deploy robots in homes. The environ-
ment is partly structured and in general the users are not robot experts.
Key challenges are long-term autonomy and natural user interaction.
We present our research approach on human augmented autonomy for
domestic robot applications.

1 Introduction

The home is an important frontier for robotics. The environment is semi-structured,
which implies that there are strong expectations about the presence of certain
object categories but not their exact location. At the same time, there is a need
for a high degree of autonomy as most users will not be experts on the use of
robot technology / smart appliances. Achieving a high degree of autonomy in
partly/semi-structured environments poses an interesting challenge. It is impor-
tant to recognize that full autonomy may be too high a bar, but 99% autonomy
with human assistance for the remaining 1% may be a much more viable goal
at a significantly reduced complexity.

A key aspect to RoboCup @ Home is the ability to take a robot on a tour
of an area, to recognize a set of objects identified by a human and later retrieve
these objects. This scenario is at the center of our research and this proposal.
The key challenges addressed are:

1. Generation of full autonomy through human augmentation
2. Utilization of cloud resources for tasks that are computationally challenging
3. Study of fluency in human-robot interaction

In the following sections we will present the background, approach, and ex-
pected output from our efforts.

2 Background

To accomplish the goals of this project, we will build on a body of successful
prior and current work in standard and social navigation, object recognition,
manipulation, and HRI.
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Navigation: A fundamental aspect of any mobile robotics project is the
ability to navigate in the environment without getting lost. In a domestic envi-
ronment it is important to be able to generate a map of an environment on the
fly and to use such dynamic maps for automatic localization. This problem is
the Simultaneous Localization and Mapping (SLAM) problem. Over the last 30
years, an abundance of research has been carried on SLAM. We have developed
the OmniMapper approach [1, 2] that allows for mapping and localization using
a wide variety of sensors and it can generate object, feature, and grid based maps
of the environment. The software is available in open-source as a ROS package.
While we do not plan to perform new research on SLAM for RoboCup-2017, we
plan to leverage this prior work. Another aspect of navigation involves moving
meaningfully around people. Traditionally in robotics this has been explored as
a person-as-obstacle, or environment as non-dynamic. Our work leverages sens-
ing human positional information [3], modeling proxemic and group dynamics
[4], and engaging in context-aware navigational paradigms [5, 6]. Navigating in
a novel environment and fluent interaction with people is core to the robot-tour
scenario.

Object Recognition: When navigating through the environment, a robot
needs to be able to recognize a variety of objects for interaction. We have de-
veloped a package for object recognition and pose estimation [7]. The package
utilizes CAD models for recognition and estimation. The appearance of an ob-
ject is used for training. Once recognized the pose of the object is estimated
using a set of Lie generators to fit the (CAD) model to observed edges. The pose
estimate is tracked at a rate of 30 Hz. A more advanced version using RGB-D
data has also been developed [8]. Recognition of natural objects on the fly is
fundamental for the robot-tour scenario.

Object Manipulation: For manipulation a key aspect is grasp planning.
We recently developed a planning model that performs this in a two-stage pro-
cess: i) fitting a super ellipsoid to a point cloud model of the objects and ii)
performing grasp planning using the super ellipsoid to reduce complexity and
generate repeatable grasps [9]. The method was evaluated for handling of a va-
riety of tabletop objects.

Human Robot Interaction: We have engaged in several projects to en-
able robots to understand social context as a means to springboard interaction.
We have designed models of context which robots can use to perceive unstruc-
tured human environments and activities, and use that information to enable a
mobile robot to automatically interact appropriately around people [6, 10]. We
are exploring new models for selective attention to help robots to zoom in on
important features of the environment. We can speed up existing region pro-
posal algorithms by 30% [11]. We also have designed new non-linear algorithms
to inform how robots can synthesize their behavior to cooperate, adapt to, and
work with people, including non-linear models of group entrainment [12], and
algorithms for robots to sense entrainment in real time and coordinate their ac-
tivity with people [13]. We are also exploring human-robot adaption algorithms
which can work longitudinally in home-based environments [14].
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3 Robot

We plan to use the Toyota HSR robot for the contest. We have unfortunately
not received the robot yet. Consequently we demonstrate the performance of the
person tracking on a Fetch Research Robot. The software transfer to the Toyota
HSR without changes. We use a phased array microphone plugged into an audio
connector and a USB port for the speaker interface. We will use the Toyota HSR
with our ROS modules installed. The robot will require internet access to access
the cloud services (Amazon and Garmin 3D World) we are leveraging.

Robot’s Software Description

– Platform: Secure Robot Operating System (SROS)

– Navigation, localization and mapping: OmniMapper

– Face recognition: Viola-Jones / FaceTracker

– Speech recognition: Amazon AWS / Alexa

– Speech generation: Amazon AWS / Alexa

– Object recognition: CNN based recognition / See earlier

– Social navigation: Leg Detector and proxemics based tracking/navigation

4 Approaches

In this section we briefly outline some of the key challenges addressed in our
research.

4.1 Leveraging Cloud Services

A key challenge is utilization of cloud resources. The repository 3D Warehouse
(former Google 3D warehouse), is a great example of models of objects in do-
mestic environments. We will use the 3D Warehouse resources to perform object
recognition and pose-estimation. We have evaluated the system on a variety of
IKEA furniture [8]. The key challenge here will be scalability to 1000+ objects.
We will use Convolutional Neural Nets (CNN) for the object detection. The
objects used for the home-tour will be retrieved or added to the 3D Warehouse

For speech interaction with an operator and the audience we use a modified
Amazon Echo API. The objective is to evaluate use of cloud based natural
language processing (NLP). The underlying NLP dialog will be used both for
general information enquiries “what is the weather in Nagoya today?” and for
specific robot actions “please take me to the kitchen area”. Speech-based dialog
is integral to the home-tour scenario.
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4.2 Social Navigation

We will use an evolutionary model for navigational behavior around people which
gauges time and familiarity with the help of social cues, and can determine how
and if the level of familiarity dictates a change in spatial proxemics between
the pair. We will be building on our prior work to design socially-aware naviga-
tion strategies [3, 15, 4, 16]. Two key aspects of our approach include ego-centric
person detection of body position, and leveraging an understanding of group
dynamics to enable realistic motion and interaction.

Ego-centric person detection is non-trivial. We are collecting 2D and 3D leg
data to tune a cascaded, simple to complex, detector. The 2D detector will be
implemented by fitting an ellipse to leg measurements. The 3D detector will use
a neural network trained over a window containing leg depths. In execution, the
window for 3D detector will be initialized by the 2D detector.

Using this, and face detection, we plan to design an affiliation module to
enable a robot to navigate to individuals or a group of people. The module will
employ group dynamical principles in real-time, such as proxemics, mirroring,
and familiarity, which will integrate with its navigation strategy.

4.3 Adaptive Human-Robot Teaming

In addition to social navigation, robots also need to coordinate their behaviors
with people, and adapt to them in real-time during shared activities such as joint
motion, shared manipulation, and so on. Building on our prior work [13, 14, 12],
we will employ a non-linear approach for robots to engage in temporal adapta-
tion and anticipation. Our method uses computational neuroscience techniques,
where a linear timekeeper model can compensate for errors on a cycle-by-cycle
basis, and error correction is modeled as a linear autoregressive process. The
robot will employ two adaptive processes - phase correct and period correction
- where the timing of the next action is adjusted to compensate for asynchrony,
and the timing of the next action is modifying accordingly. Furthermore, the
robot will be able to use this model to predict timing of future actions.

For example, during a collaborative manipulation task, the robot will learn
on the fly to adapt its motion and behavior in a way to enable effective task com-
pletion and easy interpretation by end users. Also, since the robot is building
models of human task motion, these methods will also be effective for bootstrap-
ping learning tasks for other aspects of our project.

4.4 Autonomy

Unlike structured industrial environments where robots perform predefined tasks,
domestic settings require robots to act autonomously. We propose a planning
and execution framework that independently plans for the robot’s actions, and
overcomes difficulties or generates a new plan when the original plan is not
achievable.
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We divide the system into three layers of control: 1) task-level planner that
generates plans for the task at hand, 2) an executor that tried to implement the
plan, and 3) a reactive set of primitive actions.

Planning and Re-planning The task planner considers present state, the
current mission / task and plans a sequence of actions that are encoded as a
control flow graph (CFG). The post-conditions for each atomic action enable on-
the-fly error detection. The planner is implemented as a D∗ search over possible
action in the task space.

Execution The control flow graph contains nodes and edges: Nodes rep-
resent primitive actions (such as moving to a particular position) and general
control flow actions like an “if” statement, while edges denote transfers of con-
trol. Every action also specifies post-conditions. In the event of errors re-planning
is initiated.

Diagnosis and Recovery We have several fault-handling mechanisms: 1)
The plan itself contains exception detection and handlers used for common ex-
ception conditions. 2) The planner would re-plan with the updated context when
the original plan is not feasible. 3) When the planner cannot find alternative
approaches the user is asked for assistance to resolve the challenge. The user
interaction is performed using a natural language dialog.

4.5 Integration

System components will be broken into existing frameworks. ROS provides the
necessary motion planning and flexible computational graphs will be used for
low level robotic control. The SROS implementations [17] is used to secure the
ROS application layer. Networking and cluster access for deliberation and task
coordination will use cloud APIs such as Amazon’s AWS IoT.

5 Results

The results from the entry into RoboCup 2017 from UC San Diego will be
made available in open source as ROS packages. Our past software has also been
released into open source through our GitHub repository - http://github.org/
CognitiveRobotics.

OmniMapper The OmniMapper system is a package that contains three
components: a set of modules for feature extraction from lines and planes to
RGB-D based object detection. Detected features are used for data-association.
Features matched across space and time the result are integrated into a map,
represented as a factor graph.

Cloud HRI We will have a few standard ROS APIs for cloud-based HRI
across speech and vision. This includes a Google-based “Vision API” that does
image recognition; Amazon’s “Alexa Skills Kit” for voice interaction using Echo
hardware; ConceptNet providing basic knowledge for the world. We will make
open source ROS-wrappers with uniformed interfaces.
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SROS Cybersecurity is becoming a pervasive issue as robots become ubiq-
uitous within society. Personal robots integrating with the Internet Of Things
could become targets for breaches in privacy and sources of identity theft. SROS
is an addition to the ROS API and ecosystem to support cryptography and
security [17].

Social Navigation The package will consist of a face-recognition system,
which can distinguish people. We will provide a cascaded leg-detector. The pack-
age will provide an evolutionary navigation system that infer proxemics settings
for different people depending upon familiarity levels and interaction history.
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