
Tech United Eindhoven @Home
2017 Team Description Paper

M.F.B. van der Burgh, J.J.M. Lunenburg, R.P.W. Appeldoorn, R.W.J. Wijnands,
T.T.G. Clephas, M.J.J. Baeten, L.L.A.M. van Beek, R.A. Ottervanger, H.W.A.M. van Rooy

and M.J.G. van de Molengraft

Eindhoven University of Technology,
Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

http://www.techunited.nl, techunited@tue.nl, https://github.com/tue-robotics

Abstract. This paper provides an overview of the main developments of the Tech United
Eindhoven RoboCup@Home team. Tech United uses an advanced world modeling repre-
sentation system called the Environment Descriptor that allows straight forward imple-
mentation of localization, navigation, exploration, object detection & recognition, object
manipulation and robot-robot cooperation skills. Recently developments are improved ob-
ject detection via deep learning methods, a generic GUI for different user levels, improved
speech recognition and improved natural language interpretation. These developments are
done on AMIGO and SERGIO and will now also be implemented on the Toyota HSR.

1 Introduction

Tech United Eindhoven1 is the RoboCup student team of Eindhoven University of Technology2

that (since 2005) successfully competes in the robot soccer Middle Size League (MSL) and later
(2011) joined the ambitious @Home League. The Tech United @Home team is the vice champion
of RoboCup 2016 in Leipzig and the reigning European Champion of the 2016 RoboCup Eu-
ropean Open. The robot soccer middle-size Tech United team has an even greater track record
with 3 world championship titles. See the Tech United website for more results. Tech United
Eindhoven consists of (former) PhD and MSc students and staff members from different depart-
ments within the Eindhoven University of Technology.

This Team Description Paper is part of the qualification package for RoboCup 2017 in Nagoya,
Japan and describes the current status of the @Home activities of Tech United Eindhoven. The
main achievement of our long-term development is our generic world model ED. Recent develop-
ments are improved object detection via deep learning methods, a generic GUI for different user
levels, improved speech recognition and improved natural language interpretation.

2 Environment Descriptor (ED)

The TUe Environment Descriptor (ED) is a Robot Operating System (ROS) based 3D geometric,
object-based world representation system for robots. In itself ED is database system that struc-
tures multi-modal sensor information and represents this in an object-based world representation
that can be utilized for robot localisation, navigation, manipulation and interaction functions.
See Figure 1 for a schematic overview of ED. ED is used on our robots AMIGO and SERGIO
1 http://www.techunited.nl
2 http://www.tue.nl

http://www.techunited.nl
http://www.tue.nl


2 Tech United Eindhoven

in the open @Home league and will be used on the Toyota HSR in the DSPL. In previous years,
developments have been focussed towards making ED platform independent. As a results ED
had been used on the PR2 system, Turtlebot and Dr. Robot systems (X80). ED is one re-usable

Fig. 1: schematic overview of TUe Environment Descriptor.

environment description that can be used for a multitude of needed functionalities. Instead of
having different environment representations for localization Adaptive Monte Carlo Localization
(AMCL), navigation (MoveBase), manipulation (MoveIt!), interaction, etc.. An improvement in
this single, central world model will reflect in the performances of the separate robot capabilities.
It omits updating and synchronization of multiple world models. At the moment different ED
modules exist that enable robots to localize themselves, update positions of known objects based
on recent sensor data, segment and store newly encountered objects and visualize all this through
a web-based GUI, illustrated in Figure 9.

2.1 Localization, Navigation and Exploration

The ED-localization3 plugin implements AMCL based on a 2D render from the central world
model. In order to navigate, a model of the environment is required. This model is stored in the
(ED). From this model, a planning representation is derived that enables using the model of the
environment for navigation purposes.
With use of the ed_navigation plugin 4, an occupancy grid is derived from the world model and
published as a nav_msgs/OccupancyGrid. This grid can be used by a motion planner to perform
searches in the configuration space of the robot.
With the use of the cb_base_navigation ROS package5. The robots are able to deal with end
goal constraints. With use of a ROS service, provided by the ed_navigation plugin, an end goal
3 https://github.com/tue-robotics/ed_localization
4 https://github.com/tue-robotics/ed_navigation
5 https://github.com/tue-robotics/cb_base_navigation

https://github.com/tue-robotics/ed_localization
https://github.com/tue-robotics/ed_navigation
https://github.com/tue-robotics/cb_base_navigation


Tech United Eindhoven @Home 2017 Team Description Paper 3

Fig. 2: A view of the world model created with ED. The figure show the occupation grid as well
as (unknown) objects recognized on top of the cabinet.

constraint can be constructed w.r.t. a specific world model entity described by ED. This enables
the robot to not only navigate to poses but also to areas or entities in the scene, as illustrated
by Figure 3. Somewhat modified versions of the local and global ROS planners available within
move_base are used.

Fig. 3: Navigation position constraints w.r.t. other entities in the environment

2.2 Object detection

Detection & Segmentation ED enables integrating sensor data with use of the plugins present
in the ed_sensor_integration package. Two different plugins do exist: 1. laser_plugin: Enables
tracking of 2D laser clusters. This plugin can be used to track dynamic obstacles such as humans.
2. kinect_plugin: Enables world model updates with use of Kinect data. This plugin exposes
several ROS services that realize different functionalities:



4 Tech United Eindhoven

(a) Segment: Service that segment sensor data that is not associated with other world model
entities. Segmentation areas can be specified per entity in the scene. This allows to segment
object ‘on-top-of’ or ‘in’ a cabinet.

(b) FitModel: Service that fits the specified model in the sensor data of the Kinect. This allows
updating semi-static obstacles such as tables and chairs.

The ed_sensor_integration plugins enable updating and creating entities. However, new en-
tities are classified as unknown entities.

Fig. 4: ED Perception responsible for the object segmentation and calling the object recognition
service. Left, the segmented objects in the robot’s sensor frame are displayed; the final annotated
world representation is shown at the right picture.

2.3 Object grasping, moving and placing

As for manipulating objects, the architecture is only focused on grasping. The input is the spe-
cific target entity in the world model ED. The output is the grasp motion, i.e. joint positions
for all joints in the kinematic chain over time. Figure 5 shows the grasping pipeline. A python

Fig. 5: Custom grasping pipeline base on ED, MoveIt and a separate grasp point determination
and approach vector node.

executive queries the current pose of the entity from ED. The resulting grasp pose goes to the
grasp precompute component which makes sure that we approach the object in a proper way.
MoveIt will produce joint trajectories over time with use of the current configuration, the URDF



Tech United Eindhoven @Home 2017 Team Description Paper 5

model and the final configuration. Note that MoveIt currently does not take any information
from ED into account. Finally, the trajectories are sent to the reference interpolator which sends
the trajectories either to the controllers or the simulated robot.

The grasping pipeline is extended with an empty spot designator and grasping point deter-
mination. The empty spot designator search in an area for an empty spot to place an object by
using the occupied area by other objects in this area.
The grasp point determination uses the information about the position and shape of the object
in ED to determine the best grasping point. The grasping point is a vector relative to the robot.
An example of the determined grasping point is shown in Figure 6.

Fig. 6: Grasping point determination of cylindric object.

3 Image Recognition

In order the classify or train unknown entities, the ed_perception plugin6 exposes ROS Services
to classify the entities in the world model. The ed_perception module interfaces with various
image_recognition nodes that apply state of the art image classification techniques based on
Convolution Neural Networks (CNN) illustrated in Figure 7.

6 https://github.com/tue-robotics/ed_perception

https://github.com/tue-robotics/ed_perception


6 Tech United Eindhoven

Fig. 7: Illustration Convolution Neural Networks (CNN) used in our object recognition nodes
with use of Tensorflow.

3.1 Object recognition using Deep Learning

Object recognition is done using Tensorflow: retraining the top-layer of a Inception V3 neural
network. The top layers are retrained on a custom dataset using a soft-max top-layer that maps
the image representation on a specified set of labels.
In order to create a new training set for specific objects, the ed_perception and the image_recognition
packages contains several tools for segmenting and annotating objects. Also tools for retraining
neural networks are included.

3.2 Face recognition

Face detection and recognition is done using Openface based on Torch. Openface is an existing
state-of-the-art face recognition library. We implemented a ROS node that enables the use of
these advanced technologies within the ROS network.

3.3 ROS packages

Our image recognition ROS packages can be found at GitHub7 with tutorials and documentation.
Recently, they have also been added to the ROS Kinetic package list and can be installed as
Debian packages:

ros−k in e t i c −image−r e c o gn i t i o n

4 Human-Robot Interface

In order to interact with the robot aside of speech, a web-based Graphical User Interface (GUI)
has been designed. The interface has been made with HTML5 and is hosted on the robot itself.
This allows multiple users on different platforms (e.g. Android, iOS) to access functionality of
the robot. The interface is implemented in JavaScript with AngularJS and it offers a graphical
interface to the Robot API8 which exposes all the functionality of the robot. Figure 8 gives an
overview of the connections between these components. Figure 9 gives an example of various user
7 https://github.com/tue-robotics/image_recognition
8 https://github.com/tue-robotics/robot-api

https://github.com/tue-robotics/tue_mobile_ui
https://github.com/tue-robotics/image_recognition
https://github.com/tue-robotics/robot-api


Tech United Eindhoven @Home 2017 Team Description Paper 7

Fig. 8: Overview of the WebGUI architecture. The robot’s functionalities are exposed with the
Robot API that is implemented in JavaScript. A webserver that is hosting the GUI connects this
Robot API to a graphical interface that is offered to multiple clients on different platforms.

interactions that are possible with the GUI and the different commands that can be given to the
robot while interacting with the virtual scene.

Fig. 9: Illustration of the 3D scene of the WebGUI. Users can interact with use of the menu that
appears when long pressing an object in the scene. On the left figure, the user commands the
robot to inspect the selected object, which is the ‘cabinet’. When the robot has inspected the
‘cabinet’, it has found entities on top of it. In the middle figure a grasp command is given to
the robot to pick up an object from the cabinet. The last figure show the robot executing that
action.

5 Robot Descriptions

5.1 Robot Hardware Descriptions

At the moment of writing of this team description paper, we are not in the possession of the
Toyota HSR yet. Therefore we are not able to inform you about any possible additional computing
devices in this paper.



8 Tech United Eindhoven

5.2 Robot Software Description

An overview of the software used by the Tech United Eindhoven @Home robots can be found in
Table 1. All our software is developed open-source at GitHub9.

Currently, we have some image_recognition packages released into the current ROS Kinetic
distribution and can be installed with use of apt.

Table 1: Software overview of the robots.
Operating system Ubuntu 16.04 LTS Server
Middleware ROS Kinetic [1]
Low-level control software Orocos Real-Time Toolkit [2]

https://github.com/tue-robotics/rtt_control_components
Simulation Custom kinematics + sensor simulator

https://github.com/tue-robotics/fast_simulator
World model Environment Descriptor (ED), custom

https://github.com/tue-robotics/ed
Localization Monte Carlo [3] using Environment Descriptor (ED), custom

https://github.com/tue-robotics/ed_localization
SLAM Gmapping package

http://wiki.ros.org/gmapping
Navigation CB Base navigation

https://github.com/tue-robotics/cb_base_navigation
Global: custom A* planner
Local: modified ROS DWA [4]

Arm navigation Custom implementation using MoveIt and Orocos KDL
https://github.com/tue-robotics/tue_manipulation

Object recognition Tensorflow ROS
https://github.com/tue-robotics/image_recognition/tree/
master/tensorflow_ros

People detection Custom implementation using contour matching
https://github.com/tue-robotics/ed_perception

Face detection & recognition Openface ROS
https://github.com/tue-robotics/image_recognition/tree/
master/openface_ros

Speech recognition Dragonfly + Windows Speech Recognition
https://github.com/tue-robotics/dragonfly_speech_recognition

Speech synthesis Philips Text-to-Speech
Task executors SMACH

https://github.com/tue-robotics/tue_robocup

This our current software implementation on our robots AMIGO and SERGIO, which par-
ticipate in the open league. Because of the pending delivery of the Toyota HSR and related
documentation, we are not able to provide the specific software implementation. As described
in our selection qualification paper, our goal is to use the same software as possible on all our
robots, including the Toyota HSR.
9 https://github.com/tue-robotics

https://github.com/tue-robotics/rtt_control_components
https://github.com/tue-robotics/fast_simulator
https://github.com/tue-robotics/ed
https://github.com/tue-robotics/ed_localization
http://wiki.ros.org/gmapping
https://github.com/tue-robotics/cb_base_navigation
https://github.com/tue-robotics/tue_manipulation
https://github.com/tue-robotics/image_recognition/tree/master/tensorflow_ros
https://github.com/tue-robotics/image_recognition/tree/master/tensorflow_ros
https://github.com/tue-robotics/ed_perception
https://github.com/tue-robotics/image_recognition/tree/master/openface_ros
https://github.com/tue-robotics/image_recognition/tree/master/openface_ros
https://github.com/tue-robotics/dragonfly_speech_recognition
https://github.com/tue-robotics/tue_robocup
https://github.com/tue-robotics


Tech United Eindhoven @Home 2017 Team Description Paper 9

5.3 Re-usability of the system for other research groups

Tech United takes great pride in creating and maintaining open-source software and hardware
to accelerate innovation. Tech United initiated the Robotic Open Platform website, to share
hardware designs. All packages are equipped with documentation and tutorials. Tech United
and its scientific staff have the capacity to co-develop (+10 people), maintain and assist with
questions.

5.4 Community Outreach and Media

The Tech United team carries out many promotional activities to promote technology and in-
novation with children. These activities are carried out by separate teams of student assistants.
Tech United often visits primary and secondary schools, public events, trade fairs and have reg-
ular TV performances. In 2015 and 2016 together, 100+ demos were given and an estimated
50k were reached through live interaction. Tech United has also got a very active (website, and
interacts on many social media mediums: Facebook, YouTube, Twitter and Flickr. Our robotics
videos are often shared on the IEEE video Friday website.

References

1. Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,
and Andrew Y. Ng. ROS: an open-source robot operating system. In ICRA Workshop on Open Source
Software, 2009.

2. H. Bruyninckx. Open robot control software: the orocos project. In Proceedings of the 2001 IEEE
International Conference on Robotics & Automation, 2001.

3. D. Fox. Adapting the sample size in particle filters through kld-sampling. The International Journal
of Robotics Research, 22(12):985–1003, 2003.

4. D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance. IEEE
Magazine on Robotics & Automation, 4(1):23–33, 1997.

http://roboticopenplatform.org/
www.techunited.nl
https://www.facebook.com/techunited
https://www.youtube.com/user/TechUnited
https://twitter.com/TechUnited
https://www.flickr.com/photos/techunited/

	Tech United Eindhoven @Home 2017 Team Description Paper
	M.F.B. van der Burgh, J.J.M. Lunenburg, R.P.W. Appeldoorn, R.W.J. Wijnands, T.T.G. Clephas, M.J.J. Baeten, L.L.A.M. van Beek, R.A. Ottervanger, H.W.A.M. van Rooy and M.J.G. van de Molengraft
	Introduction
	ed
	Localization, Navigation and Exploration
	Object detection
	Detection & Segmentation

	Object grasping, moving and placing

	Image Recognition
	Object recognition using Deep Learning
	Face recognition
	ROS packages

	Human-Robot Interface
	Robot Descriptions
	Robot Hardware Descriptions
	Robot Software Description
	Re-usability of the system for other research groups
	Community Outreach and Media




