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Abstract. This report describes Team Northeastern’s progress to meet
the requirements of the 2017 RoboCup@Home Domestic Standard Plat-
form League (DSPL). We three novel methods on human supervised au-
tonomy, risk-aware compositional autonomy and single source any angle
path planning to be implemented on Toyota HSR. We also present our re-
sults on autonomous navigation guided by natural language commands,
manipulation of unknown objects, and object detection. We demonstrate
our results using a FETCHRESEARCH platform as we await the arrival of
our Toyota HSR to participate in the 2017 RoboCup@Home DSPL in
Nagoya, Japan.

1 Introduction

Our overarching goal in this research and development effort is to advance the
capabilities of Toyota Human Support Robot’s (HSR) for a successful team per-
formance and technology demonstration at the 2017 RoboCup@Home DSPL.
We will achieve this goal by (1) leveraging our team’s robotics competition ex-
perience from the DARPA Robotics Challenge (DRC), NASA Sample Return
Robot (SRR) Centennial Challenge, NASA Exploration Robo-Ops Challenge,
and Intelligent Ground Vehicle Competition (IGVC), (2) developing a system-
atic model-based task validation methodology, (3) implementing novel percep-
tion based navigation, manipulation and human-robot interaction techniques,
(4) developing novel autonomy techniques for mobile robot manipulation, (5)
making the developed software available to the robotics community post compe-
tition to broaden the impact of our participation. Successful completion of this
project will not only progress the technological readiness of autonomous personal
service robots for practical applications but also contribute new knowledge and
methods to the RoboCup@Home DSPL community.

Our research at the Robotics and Intelligent Vehicles Research Laboratory
(RIVeR Lab) at Northeastern University made research contributions in exper-
imental robotics for disaster response, service and space exploration; human-
in-the-loop robot control; and whole-body motion planning and control for hu-
manoid robots. RIVeR Lab led the Team WPI-CMU in the DARPA Robotics
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: o
Fig. 1. Team Northeastern’s robot inventory relevant to RoboCup@Home: (a) NASA’a
full-size humanoid robot Valkyrie (b) Mobile manipulation platforms AERO (NASA
Sample Return Robot Challenge participant in 2013 and 2014) and Oryx 2.0 (1st Place
in the NASA Robo-Ops Challenge 2012), (¢) Our personal service robot prototype
developed under an award from the National Science Foundation.

Challenge (DRC). Our team has more than 10 years of experience in design,
control and validation of reliable robot hardware including mobile manipulation
systems and humanoids. Figure 1 depicts a sample of our current robot plat-
forms enabling our research in autonomous navigation, manipulation, human-
robot interaction, and perception. Our team has a unique opportunity as we
have been selected by NASA to receive a Valkyrie humanoid robot . Our goal
is to advance the capabilities of Valkyrie (6’ tall, 275 lbs, shown in Figure 1) [1]
to perform maintenance and construction tasks in pre-deployment missions to
get ready for the manned missions to Mars in 2030s. This platform enables our
team to rapidly validate locomotion, manipulation, perception and human-robot
interaction algorithms on a complex robot.

2 Research Plan for RoboCup@Home DSPL

We claim novelty in three areas towards realizing robot capabilities for Toy-
ota HSR in order to validate daily tasks in support of elderly and individuals
with disabilities: (1) We will extend and adapt our human-supervised autonomy
framework developed for the DARPA Robotics Challenge to achieve task-level
autonomy [2,?]. (2) We propose to develop a new method called compositional
autonomy informed by a risk-aware decision-making mechanism [3]. (3) We will
implement a new single-source any-point path planning algorithm called C-Wave
that results in significant computational improvements in 2D autonomous navi-
gation as the algorithm relies on integer arithmetic only [4].

2.1 Supervised Autonomy Framework

Realization of reliable and sufficiently agile autonomous behaviors with Toyota
HSR will require the design of a holistic control architecture which is modular
and reconfigurable. Based on our prior work [2,?], we propose to design and
implement a library of capabilities for HSR.

https://wwv.nasa.gov/press-release/nasa-awards-two-robots-to-university-groups-for-rd-upgrades
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KNOWLEDGE BASE- stores global strategies and approaches for the system,
providing options to the action engine. We will explore minimum-parameter
and context-agnostic knowledge representations for each use case. The repre-
sentations will be stored in a reconfigurable database to allow for inferences to
be quickly generated from queries. At a minimum, the knowledge base will be
aware of the history of the action engine, and provide the high-level goal and
the control modality most appropriate given both preprogrammed and learned
approaches. We will adopt openEASE [5] and NELL [6]. We will generate a se-
mantic representation of the map stored in the knowledge base so the operator
can direct HSR in the home by specifying rooms, for example.

AcTIiON ENGINE- takes the global strategy and plan given by the knowledge
base and generates a set of potential actions for the robot to complete the tasks.
The action engine has access to the information from the perception engine,
which provides filtered state information from the robot. The action engine will
be implemented as a state machine. For example, to navigate in an unknown,
dynamic environment, a series of dynamically-seeded spirals can be executed to
generate the initial map. Moreover, a hierarchical navigation architecture for the
HSR will be implemented. Our motion template based manipulation framework
[7] will be implemented as part of the action engine.

USER INTERFACE- serves as the human interaction interface which can be
adapted to various different scenarios and users. Model-based awareness algo-
rithms can selectively change and adjust the feedback to the human. The user
will only transmit high-level control commands such as points of interest in the
home (kitchen, bathroom, etc.). We will integrate technologies such as 3D mice,
game controllers, touch/gesture-enabled screens, and face and voice recognition
to provide multi-modal interfaces.

PERCEPTION ENGINE- aggregates all the sensor and state information. By
selectively and dynamically filtering the incoming data, the perception engine
generates relevant environment models. We will rely on autonomous grasping
techniques such as grasp pose detection based-on machine learning to model the
local object surface geometries given only point cloud data as input. Perception
engine will be unified with the action engine for fast SLAM implementation for
navigation in dynamic environments.

ACHIEVABLE ACTION GATE- takes the desired actions from the action engine
and checks their feasibility. In addition, the achievable action gate fuses human
input with the robot input. For example, the action gate can limit the human
input that will result in collisions with the environment, both static (e.g. furni-
ture) or dynamic (e.g. people/pets) obstacles, in a navigation task. We plan to
integrate these human inputs to the system as constraints on the system model.
In order to find a solution that satisfies the task within the constrained model,
we need to map the human-inputs to constraints on the planner.

RoBoT CONTROL- accepts the actions from the action engine and translates
them to low-level motion controllers. The robot control implements the algo-
rithms and methods that control the robot to be able to take the set of actions
from the action gate and implement the motion planning, localization, trajec-
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tory following, and manipulation required for the task. Each control method will
adhere to an application specific interface so that the addition of new systems
are easily accommodated by the achievable action gate and perception engine.

CLOUD ENGINE- receives limited state information about the robot system
through the human robot interface and passes the information to the cloud,
harnessing the combination of significant human and computational resources,
to provide simulations and model-based awareness and control improvements.
For example, a complete model of the robot system as well as human input
models can be run in the cloud engine. This is a highly desirable capability and
we propose to implement foundational blocks for HSR.

CONTEXT ENGINE- receives information from the human-robot interface to
develop context information based on environment models and task descrip-
tions. Context information can be deduced from location, identities of nearby
people and objects, time, etc [8]. We will generate the context information using
Bayesian inference system for complex interpretation and decision-making by
evaluating the performance on a task by task basis. The context engine’s results
are passed to the knowledge base so they can be recalled to compare previous
contexts with the current state of the system as time evolves. The knowledge
base, context engine, and cloud engine all operate in close coordination to pro-
vide robustness by allowing the system to adjust to changing conditions.

2.2 Risk-Aware Compositional Autonomy

We assume that a task can be completed
by composing a sequence of behaviors se-
lected from a set of feasible actions gen-
erated by the motion planned. These ac-
tions make up the task-level robot behav-
iors and the compositional robot autonomy
can be achieved by stitching these tasks in
some order by the high-level mission plan-
ner. We posit that it is possible to develop
a theory of robot decision-making under
uncertainty by introducing measures of Fig.2. Demonstration of collision
risk to robot behaviors with the goal of risks introduced by sensing and control
enabling risk-averse or risk-taking robot e€rrors.

autonomy. We will introduce our method-

ology to evaluate the risk associated with an action composition for completing
a given task using a two-link arm shown in Fig. 2 and by taking into account
the collision risk probability P..jision(Ai) where A; are feasible actions for
the robot to complete.

The arm needs to move from the right side of the obstacle to the left side.
The shape and pose of the obstacle was detected by the robot vision system
and provided to the motion planner. The gray rectangular object with solid
outline shows the detected result. However, since there are uncertainties the
actual object pose is different than the detected one. The light gray rectangular
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Fig. 3. (Left) The solution of single source any angle path planning problem using
the CWave algorithm. (Right) Performance of CWave in comparison to existing path
planning algorithms.

object with dashed outline depicts a possible actual pose. The solution generated
by the motion planner is represented by a set of robot states, (Figure 2). A cubic
spline interpolation method is implemented and the end-effector trajectory of the
interpolated motion is marked in red. The blue circles represent the region of
errors for the end-effector positions.

To model the collision risk, the continuous motion trajectory Traj(M;(A;))
is linearly sampled in joint space to a sequence of waypoints, q[n], where q[n]
is a set of robot configurations and n = 0, ..., N. The result of the optimization-
based motion planning algorithm can be directly used due to its property of
subdivision. We define the collision risk probability peouision Of a robot config-
uration g[n] on a given trajectory Traj(M;(A;)) by a parametrized piecewise
polynomial function which depends on the shortest distance d(q[n]) between the
robot and the obstacles.

0 if d(q[n]) > dsafety
Peottision(d(aln])) = (1- M)b it d(aln]) < dsagery W

where dgqfety is the distance between any point on the robot to the obstacle
and b is the degree of the polynomial function, which defines the steepness of
the probability curve. We will implement variants of risk-aware compositional
autonomy for achieving autonomous navigation and manipulation capabilities
for HSR.

2.3 CWave Path Planning Algorithm

Conceptually CWave is a wave-propagation algorithm and, in this sense, can
be considered a special case of the Fast Marching Method where the interface
velocity is constant. It is also similar to a well-known Lee’s wave algorithm that
deals with octagonal or square waves propagating over an 8- or 4-connected
graph, respectively. In case of CWave, however, the wave front has a circular
shape to the extent permitted by the grid. The main idea of CWave is that it
does not use a graph representation of the grid, and maintains the wave front
as a set of discrete geometric primitives (discrete circular arcs and lines), rather
than a set of individual points (vertices).
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Fig. 4. (Left) Detection of candidate grasp poses for object pick-up. (Center) Results
demonstrating object and person detection. (Right) FETCHRESEARCH platform used
in qualification tasks.

In a nutshell, we want to calculate distances from a given point A to all other
points in the bounded area. The gradual expansion of a circular wave from the
start source point A allows to assign distances to all points which are directly
visible from A. Then at every point where the wave meets an obstacle, a new
source point can be placed. Simultaneous expansion of circular waves from new
sources allows to further assign distances to points in the bounded area. At a
certain moment, some of the waves may merge.

We developed the theory and practical considerations that fully support the
C-Wave algorithm [4]. We adapted Theta*, Lazy Theta*, Field D* for single-
source problems, and incorporated CWave algorithm for speed testing. The
framework measures the time required by each algorithm to solve a set of path
planning problems on a given map. The results (Fig. 3), demonstrate that on all
maps, CWave performed faster than other algorithms. Given that CWave works
using only integer arithmetic and bit shifting, it can be ported to low-cost em-
bedded platforms that lack support for floating-point operations, for example,
those used in swarm robotics.

3 Accomplishments To-Date Towards Qualification

In this section, we describe our methodology in completing the RobboCup@Home
DSPL qualifications tasks. As we are still waiting for the arrival of our Toy-
ota HSR platform, we demonstrate these tasks using a FETCHRESEARCH robot
which has comparable capabilities to HSR.

Speech Guided Autonomous Navigation. Our speech-to-navigation mod-
ule utilizes the CMU Sphinx?[9] voice recognition library to interpret a user’s
command. The module is integrated into the ROS Navigation stack to provide
autonomous driving to locations of interest. The Sphinx library uses a phonetic
dictionary and language model that map words to phones and match recognized
words to a known database respectively. We use Sphinx to extract the intention
of a user and the desired location they would like the robot to travel to. For our

2 cmusphinx.sourceforge.com
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purposes, FETCHRESEARCH responds to navigation commands, such as GOTO,
and extracts the location from the rest of the sentence. We then use the ROS
MOVEBASE action type to send a navigation goal towards the desired location.
In order to do so, we assume that the robot has knowledge of its environment
and certain key locations, usually defined by the user. Our initial tests show that
Sphinx with the navigation stack provide consistent results and work well with
user-defined locations. Since FETCHRESEARCH does not have microphone, an
external microphone connected to laptop is used. HSR provides a microphone
array and will let us implement our speech module without external microphone.

Manipulation of Unknown Objects. The Storing Groceries task requires
robust grasping of both known and unknown objects. Our grasping approach
does not use any prior knowledge about object shape or texture and finds feasible
grasps for every type of object. Our approach includes four steps: (1) Segmenta-
tion of table and clustering objects on the table to get individual point clouds.
(2) Generation of grasp pose candidates for each object and selection of only
vertical and horizontal poses. (3) Evaluating selected grasp poses for collision
avoidance. (4) Placing objects on shelves.

Pick and Place Pipeline. (1) To find object point cloud clusters, firstly, our
algorithm finds the table using RANSAC with plane model [10], then, we extract
the the point cloud which are on the table with a threshold. Secondly, Euclidean
Clustering is applied to extract point cloud to find individual clusters of objects.
Finally, Statistical Outlier Removal filter is applied to remove noise. (2) The
point cloud clusters of objects are fed to grasp pose detection algorithm. We
have used agile_grasp ROS package [11] which returns a number of normal vec-
tors of grasp pose candidates. In our trials, we saw that vertical and horizontal
grasps are working better so that we only used these grasp poses. The biggest
advantage of agile_grasp is that it doesn’t require any prior knowledge about the
objects. In Figure 4, the visualisation of robot, point cloud and normal vectors
of grasp pose candidates can be seen. (3) The third step of grasping is evalu-
ating the selected grasp poses with collision avoidance. We have used Movelt!
Motion Planning Frameworkfor calculating inverse kinematics and finding colli-
sions. Movelt! comes with different planners. After trying different planners and
parameters we have seen that RRT-Connect planner [12] with planning time of
5 seconds and 100 attempts works fast and reliable. (4) To place objects on the
shelf, a similar and simple approach is implemented. Once a successful grasping
is achieved, robot turns it’s head towards shelf to get a point cloud, then, planes
are segmented to finds shelves. An empty location is then selected and send to
robot’s planner. If planner returns a feasible trajectory, robot executes the plac-
ing. If there is no feasible trajectory, robot then try other shelf. In future, our
object detection will be integrated to place similar objects together on the shelf.

Adaption to Toyota HSR. Both HSR and Fetch has similar RGB-D sen-
sors so that perception pipeline can be implemented to HSR easily. HSR has a
Stereo sensor and we are planning to compare the results between Stereo and
RGB-D sensor. We are also planning to use camera-in-hand to improve grasping
accuracy. On grasp planning side, we want to try two different motion planning
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Category Software

Operating System Ubuntu 14.04

Meta OS ROS Indigo

Perception Point Cloud Library, Octomap
Speech Recognition CMU Sphinx

Face Recognition OpenCV Face Recognizer
Object Detection Darknet, YOLO

Motion Planning Movelt!

SLAM, Navigation ROS Karto, AMCL

Table 1. A summary of software and external computing resources.

framework, Movelt! and TrajOpt. Since HSR is a ROS-enabled robot, imple-
menting both motion planning frameworks is trivial.

Object Detection and Classification. In the recent years, deep-learning
based object detection and face recognition algorithms showed great progress but
they still lack implementation in practical robotics. Open-source and state-of-
the-art algorithms will enable better human-robot interaction. As a preliminary
work, we have implemented an object detection algorithm called Darknet/YOLO
Object detection framework [13]. YOLO is capable of working in real-time and
doesn’t require high computational resources. Results from this object detection
method using robot’s RGB camera is depicted in Figure 4,

Fetch Overview & Adaption to Toyota HSR. We have developed our
algorithms on FETCHRESEARCH platform. Fetch is an integrated mobile robot
including a mobile base, a 7 DoF back-drivable arm and a head. It’s mobile base
has 2D laser scanner and IMU sensor for mapping and navigation. The arm has
6kg payload at full extension and 940.5mm length. The head has 2 DoF (pan-
tilt) and a RGB-D sensor which provides VGA depth map and RGB image at 30
Hz. Fetch comes with a Intel i5 and 16GB computer. Given the specifications of
Fetch, we noted that it has many similarities with HSR on both hardware and
software which will make migration to HSR easy.

Software & External Computing Overview. The 3rd party software
used in our work is listed in Table 1. For Pick and Place, Face Recognition and
Object Detection, we have used a desktop computer with 5th Gen i7 Intel CPU,
GTX 9080 Graphic Card and 32GB RAM. For navigation, we have used a laptop
with 4th Gen i7 Intel CPU, Quadro K2000M 2GB and 8GB RAM. A 5G local
network is used between computers and robot.

4 Conclusions and future work

In summary, our progress to date is well-aligned with the timeline set by our team
at the beginning of the season. We are expecting to receive our HSR in April 2017.
We are confident our team will have the time and resources to implement the
methods described in the research plan to demonstrate unique robot capabilities
at the 2017 RoboCup@Home DSPL in Nagoya, Japan.
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