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Abstract. This paper provides an overview of the main developments
of the Tech United Eindhoven RoboCup@Home team. The main research
effort of the past year has focused on developing a global, volumetric,
object-oriented world model. This world model should replace all world
representations that are commonly present in an architecture, e.g., for
navigation and manipulation. As a result, these modules can benefit from
the additional knowledge that is present in the world model. This world
modeling approach is expected to i) make modules such as navigation
more robust since these can benefit from the additional knowledge that
is present in the world model and ii) reduce the amount of hardcoded
knowledge that is commonly present.

1 Introduction

Tech United Eindhoven is the RoboCup team of the Eindhoven University of
Technology, competing in the Middle Size League and the @Home League. Tech
United has been competing in the @Home league since 2011, scoring second
places at the 2014 RoboCup German Open and RoboCup 2014 in Joao Pessoa.
Tech United Eindhoven consists of PhD and MSc students and staff members
from different departments within the Eindhoven University of Technology.

This Team Description Paper is part of the qualification package for RoboCup
2015 in Hefei, China and describes the current status of the @Home activities of
Tech United Eindhoven. First, our newly developed world model will be discussed
in Section 2, followed by the use of this world model for perception (Section 3)
and navigation (Section 4).

2 World Modeling

To successfully solve a RoboCup@Home challenge, a robot needs a basic under-
standing of the environment: it needs to know how to get from A to B without
colliding, it must be able to detect humans and objects with which it has to in-
teract and it must localize itself with respect to the objects it has to manipulate.
In previous years separate world representation methods were used for each of
these subtasks:
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— navigation: down-projection of a 3D Octomap [1] representation
— object tracking: multiple hypothesis tracking method [2]
— localization: Monte Carlo method on a 2D grid representation !

A clear disadvantage of this approach was that all world representation had to
be created and maintained separately. Furthermore, the 3D Octomap proved to
not be very robust against dynamics: moving obstacles sometimes left a trail of
‘clutter voxels’ which resulted in a noisy 2D planning representation. Last but
not least, it was clear that the separate representations could easily benefit from
each other if the information they stored was combined.

To overcome these issues, a new 3D volumetric, object-oriented world model
is developed that can be used for all above-mentioned subtasks. This world
model, named ED (Environment Descriptor), represents the objects in the world
as entities with a 3D shape, pose and type. If the object is known beforehand
(e.g., the kitchen block in a RoboCup@Home arena), its shape is represented by
a detailed 3D mesh. In case the object is unknown, its shape is represented as a
floor-aligned extruded polygon. An example can be seen in Fig. 2(b).

The world model is updated by comparing the point cloud obtained from a
3D sensor with the 3D shape of the world model, and applying the changes. If a
set of measured points could not be associated with the existing model, a new
entity is created. If an existing entity should have been measured, but could not
be associated with any sensor data, the entity is removed. This process consists
of the following steps (illustrated in Fig. 1):

1. Calculate the sensor pose of the 3D sensor
2. Render the world model:
— Based on the current world model state and the sensor pose, generate a
‘virtual’ depth image (as if the world model was observed by the sensor)
3. Extract features:
(a) Calculate normals of the sensor point cloud
(b) Calculate normals of the rendered (world model) point cloud
4. Try to associate each sensor point to a world model point
— Uses Euclidean point and normal distance
— If a sensor point cannot be explained (based on a threshold), add it to
a residual point cloud
5. Cluster the residual point cloud into separate segments
6. Try to associate the segments with current entities by calculating the overlap
of their shapes
(a) If segment can be associated with entity — update the entity shape
(b) If segment cannot be associated — add it to the world model
7. Clear world model entities that are in view but could not be associated in
step 4) or 6)

The world model obtained using the steps above contains volumetric information
about known and unknown objects in the world. This allows the use of this

! Used implementation: http://wiki.ros.org/amcl
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Fig. 1. Overview of the world model update mechanism. From left to right: world
model rendering, normal estimation, association and clustering

world model for safe 3D navigation, as is explained in Section 4. Furthermore,
due to the association in step (4) and clustering in step (5) unknown objects are
automatically segmented. For example, an object situated on top of table will
automatically be segmented and labeled as new if the table is correctly modeled.
This allows perception routines to focus on relative small, segmented parts of
the image. The volumetric information of the objects also enables manipulation
tasks. An example of a manipulation task using the world model can be seen in
Fig. 2.

In its current status, the world model does not yet contain the features of
previous semantic world models as described in [2, 3]. A future research direction
would be to include motion models to allow for object tracking as well as inte-
grating an algorithm to do reassociation. The former can be used by navigation
to decide, e.g., on which side to pass a moving obstacle while the latter will
improve clearing. This demonstrates one of the advantages of a single world
model that is used for multiple tasks: the navigation module will directly benefit
from improvements in the world model.

3 Perception

As stated before, the world model segments the sensor data into separate entities.
This means that each entity is related to a certain part of both the color image
and the depth image. These two sources can provide information essential for
the classification. The classification process is initiated by assigning a ‘perception
worker’ to each entity. These workers are independent from each other and run in
multiple processing threads, which allows for recognition and labeling of several
entities simultaneously in real-time.
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(a) Pick up task (b) World model (¢) Sensor view

Fig. 2. The robot picks up the object with use of the information available in the newly
designed world model

Each perception worker is responsible for calling one or several classification
algorithms on the segmented color and depth image belonging to corresponding
entity. At the time of writing the following perception algorithms are used:

— Size Matcher: matches the dimensions, width and height, of the current
entity with the one from previously learned models

— Objects of Daily Use: provides a matching between the current entity and
previously learned models based on SIFT features [4]

— Color Matcher: performs color histogram comparison between the current
entity and previously learned models

— Human Contour Matcher: applies a Template Matching technique to deter-
mine if the entity’s shape matches that of a human head and shoulders

— Face Detector: searches for faces in the segmented area of a given entity
using OpenCV face detection?

— Face Recognition: if a face is found in an entity, then an attempt to find a
corresponding match is performed among previously learned faces based on
OpenCV face recognition®

Each of these perception algorithms tries to determine the type of the entity
and generates hypotheses and according scores. Then, the perception worker
collects all hypothesis and fuses them into one final hypothesis. This allows for a
robust classification of household objects and people recognition. More percep-
tion algorithms can be added to this pipeline as required. The ones presented
above allow for an effective recognition and labeling of entities present in most
RoboCup challenges.

2 http://docs.opencv.org/trunk/doc/py_tutorials/py_objdetect/
py-face_detection/py_face detection.html

3 http://docs.opency.org/trunk/modules/contrib/doc/facerec/
facerec_tutorial.html
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4 Navigation

In our new navigation system, the world model introduced in Section 2 has re-
place the time-dependent Octomap representation in [5,8]. Experiments have
shown that this representation is indeed more robust against clutter. Further-
more, the local planner that has been used in previous years has been replaced
by a modified implementation of the ROS DWA planner. The details of this
approach will be published at a later time.

Another benefit of using a volumetric world model is that instead of defining
hardcoded waypoints throughout the RoboCup@Home scenario, navigation goals
can be derived from the world model. Although the concept of a goal region is
common in motion planning, see, e.g., [7], navigation goals are still typically
defined as waypoints, possibly with a ‘goal area radius’ and an independent
orientation constraint, i.e., the desired orientation with respect to the world
frame is independent of the position within the goal region. When taking the
task context into account, the shape and size of the goal region G as well as the
desired orientation within that region depend on the task at hand. To put this
into practice, the navigation goals are not simply defined as waypoints but as
constraints. These can be defined in any frame of reference, e.g., the combination
of xgbj + ygbj > 0.45% and xgbj + ygbj < 0.60? directs the robot to a radius
0.45 < r < 0.60 as can be seen in Fig 3. This is a convenient distance from an
object to grasp it. The orientation constraint can be defined similarly, which can
be used to make the robot face a person or when looking for an object on a table
(see Fig. 4).

Fig.3. Visualization of the goal con- Fig.4. Visualization of the goal con-
straint G to grasp the object. straint G to search the table for objects.

The corresponding position and orientation constraints G are subsequently
computed based on the purpose of navigation and are sent to the global planner.
The A* planner searches a path to Gi. = {¢q € G|c(q) < ¢min}, i-e., the subset of
the goal region of which the costs ¢(q) are below threshold ¢piy. If no path can
found, the search is repeated towards Gne = G \ Gie. If a path is returned, it will
be send to the local planner that will start moving the robot along this path.
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5 Conclusions

In this paper, this year’s main developments of Tech United Eindhoven have
been discussed:

— A new world model has been developed: Environment Descriptor. By com-
bining semantic and volumetric information about the environment, this
world model can be used not only for task planning and execution but also
for motion planning.

— Perception algorithms are implemented as ‘workers’ on world model entities
which allows for real-time classification of objects.

— One of the benefits of using a volumetric world model is that predefined way-
points have become obsolete. Instead, a goal area can be defined depending
on the task and the object at hand, which greatly robustifies navigation.

With these improvements, we hope to improve on last year’s performance. We
are looking forward to RoboCup 2015 in Huefei!

Robot Hardware Descriptions

Fig. 5. The AMIGO robot. Fig. 6. CAD drawing of SERGIO.

AMIGO (Autonomous Mate for Intelligent Operations, see Fig. 5) has com-
peted in RoboCup@Home since 2011. Its design is based on a Middle Size League
soccer robot, equipped with two Philips Experimental Robotic Arms mounted
on an extensible upper body. Based on our experiences with AMIGO, SERGIO
(Second Edition Robot for Generic Indoor Operations, see Fig. 6) has been de-
veloped. The main differences with AMIGO are the use of Mecanum wheels
which are compliantly suspended, the torso with two degrees of freedom and the
modular setup. The core specifications of AMIGO and SERGIO can be found in
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Table 1. More details about the robots can be found on the Robotic Open Plat-
form*, where all CAD drawings, electrical schemes and CAD files are published.

Table 1. Core specifications of AMIGO and SERGIO

AMIGO

SERGIO

Name

Base

Torso

Manipulators
Neck

Head
External devices
Dimensions

Weight
Additional
sors
Microphone
Batteries
Computers

sen-

Autonomous Mate for IntelliGent
Operations

Fully holonomic omni-wheel plat-
form based on a soccer robot

1 vertical DoF using a ball screw

2 T7-DoF Philips
Robotic Arms
Pan-tilt unit using two Dynamixel
RX-28 servo actuators

Kinect for XBox 360

Wireless emergency button
Diameter: 0.75 m, height: 1.5 m

Experimental

+70 kg

Hokuyo UTM-30LX laser range
finder on base and torso

RODE Videomic

4x Makita 24 V, 3.3 Ah

4x AOpen Mini PC with Core-i7
processor and 8 Gb RAM

Second Edition Robot for Generic
Indoor Operations

Fully holonomic Mecanum wheel
platform with independent wheel
suspension system

1 nearly vertical DoF' using a cou-
pled ankle and knee joint, 1 rota-
tional hip joint

2 7-DoF custom arms

Pan-tilt unit using two Dynamixel
RX-64 servo actuators

Kinect for XBox 360

Wireless emergency button

Base: 0.7 m x 0.6 m, height:
+1.65 m

+70 kg

Hokuyo UTM-30LX laser range
finder on base and torso (tilting)
RODE Videomic Pro

4x Makita 24 V, 3.3 Ah

3x Gigabyte mini ITX board with
Core-i7 processor and 16 Gb RAM

Robot Software Description

An overview of the software used by the Tech United Eindhoven @Home robots
can be found in Table 2. Our recent software developments can be found on

GitHub?.

4 http://www.roboticopenplatform.org/
® https://github.com/tue-robotics
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Table 2. Software overview of the robots.

Operating system
Middleware
Low-level software
World model

Localization

SLAM
Navigation

Arm navigation
Object recognition

People detection
Face detection
Face recognition
Speech recognition

Speech synthesis
Task executors

Ubuntu 12.04 LTS Server

ROS Hydro

Orocos Real-Time Toolkit

ED (Environment Descriptor), custom
https://github.com/tue-robotics/ed

Monte Carlo using ED, custom
https://github.com/tue-robotics/ed _localization
Gmapping: http://wiki.ros.org/gmapping

Global: custom A* planner

Local: modified ROS DWA

Custom implementation using Orocos KDL
Combination of size matching (custom), color matching (cus-
tom) and Objects-of-Daily-Use Finder
http://wiki.ros.org/objects_of _daily use_finder
Custom implementation using contour matching

See Section 3

See Section 3

Dragonfly + Windows Speech Recognition
http://code.google.com/p/dragonfly/

Philips Text-to-Speech

SMACH

http://wiki.ros.org/smach
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