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Abstract. This paper aims at reporting the recent progress of research
on and development of our intelligent robot KeJia. The long-term goal of
this effort is to develop human-level intelligence for domestic robots. The
effort covers research issues ranging from hardware design, perception
and high-level cognitive functions. RoboCup@Home competition, besides
other case studies, is taken as a main test-bed for these techniques and
the whole robot system.

1 Introduction

More and more researchers in robotics and AI are showing their interest in intel-
ligent robots [4, 5, 14, 18]. Research on intelligent service robots, which aims to
fulfill a fundamental goal of Artificial Intelligence, is drawing much more atten-
tion than ever. Yet there are still challenges lying between the goal and reality.
There are several essential abilities that a robot should have in order to make it
intelligent and able to serve humans. Firstly, the robot should be able to perceive
the environment through on-board sensors. Secondly, the robot has to indepen-
dently plan what to do under different scenarios. Thirdly and most importantly,
the robot is expected to be able to communicate with humans through natural
languages, which is the core difference between service robots and traditional
robots. As a result, developing an intelligent service robot requires huge amount
of work in both advancing each aspect of abilities, and system integration of all
such techniques.

The motivation of developing our robot KeJia is twofold. First, we want
to build an intelligent robot integrated with advanced AI techniques, such as
natural language processing [6], hierarchical task planning [7] and knowledge
acquisition [5, 8]. Second, by participating RoboCup@Home League, all these
techniques could be tested in real-world like scenarios, which in return helps
the development of such techniques. In previous RoboCup@Home competitions,
our robot KeJia got two 2nd places in 2013 and 2011, respectively. Other demo
videos are available on our website1.

1 http://wrighteagle.org/en/demo/index.php



In this paper, we present our latest research progress with our robot KeJia.
Section 2 gives an overview of our robot’s hardware and software system. The
low-level functions for the robot are described in Section 3. Section 4 presents
techniques for complicated task planning and Section 5 elaborates our approach
to dialogue understanding. Finally we conclude in Section 6.

2 Hardware Design and Architecture

Fig. 1: The Robot KeJia

The hardware architecture of our robot KeJia
was designed in 2012 and has shown its sta-
bleness since RoboCup@Home 2012. Our robot
is based on a two-wheels driving chassis. It is
equipped with a lifting system that could ad-
just the height of its upper body quickly. A five
degrees-of-freedom (DOF) arm makes our robot
agile to fulfill manipulating tasks under indoor
environments. It has a reach of over 83 centime-
ters and is able to hold a payload of up to 500
grams while fully extended. Our robot is about
1.6 meters height and weighs about 40 kilograms.
For supporting the real-time environmental per-
ception, our robot is equipped with a Kinect
camera, a high-resolution RGB camera, two laser
range finders and a microphone. The 20AH bat-
tery makes a guarantee that our robot could be
reliably running in continuous applications. The computational capability of
KeJia is powered by a laptop setting on the back of robot. The robot is shown
in Fig. 1.

As for the software system, Robot Operating System (ROS)2 has been em-
ployed as the infrastructure supporting the communication between modules
in our KeJia robot. In general service scenarios, our robot is driven by human
speech orders, as input of the robot’s Human-Robot Dialogue module. Through
the Speech Understanding module, the utterances from users are translated into
the internal representations of the robot. These representations are in the form
of Answer Set Programming (ASP) language [10] which is a Prolog-like logical
language. An ASP solver is employed in the Task Planning module to automati-
cally make decisions given the translated results. The Task Planning module then
generates the high-level plans for users’ tasks. The generated course of actions is
fed into the Motion Planning module. Each action is designed as a primitive for
KeJia’s Task Planning module and could be carried out by the Motion Planning
module and then autonomously executed by the Hardware Control module. A
figure describing the architecture is shown in Fig. 2. In case of simple tasks or
pre-defined ones, a state machine is used instead of the Task Planning module.

2 http://www.ros.org/wiki/



Fig. 2: Software architecture of KeJia

3 Perception

3.1 Self-Localization and Navigation

For self-localization and navigation, a 2D occupancy grid map is generated first
from the raw data collected by laser scanners through a round travel within the
rooms beforehand[11]. Then the map is manually annotated with the approxi-
mate location and area of rooms, doors, furniture and other interested objects.
Finally, a topological map is automatically generated, which will be used by the
global path planner and imported as a part of prior world model. With such
map, scanning match and probabilistic techniques are employed for localization.
Moreover, VFH+[19] is adopted to avoid local obstacles while the robot is navi-
gating in the rooms. Frontier-based exploration strategy[21] and GMapping[11]
algorithm are used to explore unknown environment. We also create the 3D en-
vironment representation using octo-tree structure[12], the system receive the
point cloud information from the Kinect device, and then process the data with
the localization provided by 2D grid map, eventually we get an effective and
efficient 3d map, the map can be used in avoiding obstacles in all height and
motion planning.

3.2 Vision

Sensors of our vision system consist of a Microsoft Kinect and a high-resolution
1394 RGB camera from PointGrey. With the pre-calibrated intrinsic and ex-
trinsic camera parameters, we obtain an aligned RGB-D image by combining
the RGB image from 1394 camera with the depth image from Kinect. With such
aligned RGB-D image, our vision module is capable of detecting, tracking people
and recognizing different kinds of objects.

People Awareness The aligned RGB-D image is transformed into the robot’s
coordinate using ROS tf API. Since human will occupy a continuous and almost
fixed-size space, we segment the point cloud into multiple connected-components,
and analyze the shape of each component. Each candidate is then passed into a
pre-trained HOD [17] upper body detector to decide whether it is human or not.
Then a HAAR [20] face detector from OpenCV [3] is used to find and localize
human face. If present, the VeriLook SDK will be used to identify whether it is
known via face recognition.



Fig. 3: Object recognition

Object Recognition We follow the approach
as proposed in [16] to detect and local-
ize table-top objects including bottles, cups,
etc. The depth image is first transformed
and segmented, then the largest horizontal
plane is extracted using Point Cloud Library
(PCL) [15], and point clouds above it are
clustered into different pieces. After that the
SURF feature matching against the stored
features are applied to each piece [1]. The one
with highest match above certain threshold is
considered as a recognition. At last, to further
enhance the detection performance and decrease FP rate, we check each recog-
nized cluster and filter out those vary too much in size. Recognition result is
shown in Fig. 3.

4 Integrated Decision-making

One of the most challenging tests in the RoboCup@Home competition is GPSR,
where a robot is asked to fulfill multiple requests from an open-ended set of user
tasks. This ability is generally required for real-world applications of service
robots. We are trying to meet this requirement by developing a set of tech-
niques that can make use of open knowledge, i.e., knowledge from open-source
knowledge resources, including the Open Mind Indoor Common Sense (OMICS)
database, whose knowledge was input by Internet users in semi-structured En-
glish. This section provides a brief report on this effort.

In the KeJia project, the integrated decision-making [9] module is imple-
mented using Answer Set Programming (ASP), a logic programming language
with Prolog-like syntax under stable model semantics originally proposed by
Gelfond & Lifschitz (1988). The module implements a growing model M =
< A,C∗, P ∗, F ∗ >, the integrated decision-making mechanism, and some auxil-
iary mechanisms as an ASP program MΠ . The integrated decision making in M
is then reduced to computing answer sets of MΠ through an ASP solver. When
the robots Dialogue Understanding module extracts a new piece of knowledge
and stores it into M, it will be transformed further into ASP-rules and added
into the corresponding part of MΠ .

4.1 Representing growing models in ASP

Given any growing model M = < A,C∗, P ∗, F ∗ >, where A, C∗,P ∗, and F ∗ rep-
resents the robot’s action model and the conceptual, procedural and functional
knowledge, respectively. All the components can be expressed in ASP with the
following conventions. The underlying language includes three pairwise disjoint
symbol sets: a set of action names, a set of fluent names, and a set of time
names. The atoms of the language are expressions of the form occurs(a, t) or



true(f, t), where a, f and t are action,fluent, and time name, respectively. In-
tuitively, occurs(a, t) is true if and only if the action a occurs at time t, and
true(f, t) is true if and only if the fluent f holds at time t. Based on these
conventions, an ASP-rule is of the form

H ← p1, ..., pk, notq1, ..., notqm (1)

where pi, 1 ≤ i ≤ k, and qi, 1 ≤ i ≤ m are literals, and H is either empty or a
literal. A literal is a formula of the form p or ¬p, where p is an atom. If H is
empty, then this rule is also called a constraint. An ASP-rule consisting of only
H is called an ASP-fact. An ASP program is a finite set of ASP-rules. There are
two kinds of negation in ASP, the classical negation ¬ and non-classical negation
not. Roughly, not q in an ASP program means that q is not derivable from the
ASP program. Similarly, a constraint that ← p1, ..., pk specifies that p p1, ..., pk
are not jointly derivable from the ASP program.

4.2 Integrated decision-making in ASP

Since any ASP solver innately possesses a general-purpose goal-directed plan-
ning schema, we embed a general-purpose task-directed action selection schema
into the existing schema, so that the augmentation becomes a general-purpose
decision-making mechanism that integrates both schemas and guarantees the
executability of every plan it generates when there is sufficient knowledge for
the corresponding task. Technically, the augmentation is built on the basis of
MΠ .

First of all, we name a class of entities called sequence as follows: (i) an
action a is a sequence; (ii) a task T is a sequence; and (iii) if Pi(1 ≤ i ≤ m)
are sequences, then p1; ...; pm is a sequence. Let τ =< s0, a0, s1, ..., an−1, sn > be
any trajectory. That τ satisfies a sequence p is defined recursively as follows:

1. If p = a, where a is an action, then a0 = a;
2. If p = T , where T is a task such that there is an HRDS rule in P ∗ that

decomposes T into a sequence of sub-tasks, then τ satisfies this sequence of
sub-tasks, or where T is a task such that it is designated as a set of literals
in F ∗, then this set is a subset of the state sn;

3. If p = p1; ...; pm, where Pi(1 ≤ i ≤ m) are sequences, then there exist
0 ≤ n1 ≤ n2 ≤ ... ≤ nm−1 ≤ n such that:
– the trajectory < s0, a0, ..., sn1 > satisfies p1;
– the trajectory < sn1 , an1 , ..., sn2 > satisfies p2;
– ...;
– the trajectory < snm−1 , anm−1 , ..., sn > satisfies pn;

According to the definitions above, if a trajectory < s0, a0, s1, ..., an−1, sn >
satisfies a sequence a; a

′
where a and a

′
are actions, and a

′
is not executable

in s1, then a0 = a and there exists a state sm(1 ≤ m ≤ n) such that sm
satisfies the preconditions of a

′
and am = a

′
. In other words, the sub-trajectory

< s1, a1, ..., sm > fills the gap between a and a
′
.



A sequence S specifies how to complete a task T step by step. If a trajectory
contains a sub-trajectory which satisfies S, then the corresponding task T is also
completed in this trajectory. Now we consider how to specify a sequence S in
ASP. Given an growing model M, we want to obtain a set of ASP-rules of S,
ΠS , such that a trajectory < s0, a0, s1, ..., an−1, sn > satisfies both M and S if
and only if {true(σ, i)|σ ∈ si, 0 ≤ i ≤ n}

∪
{¬true(σ, i)|¬σ ∈ si, 0 ≤ i ≤ n}

∪
{occurs(ai, i)|0 ≤ i ≤ n− 1} is an answer set of MΠ

∪
ΠS .

5 Dialogue Understanding

The robot’s Dialogue Understanding module for Human-Robot Interaction con-
tains Speech Recognition module and Natural Language Understanding module,
it provides the interface for communication between users and the robot.

The Speech Recognition module uses the Speech Application Programming
Interface (SAPI) which developed by iFLYTEK and on this basis, we have devel-
oped a Speech Recognition system for KeJia. Once a user’s utterance is captured
by the Speech Recognition module, it is converted into a sequence of words. The
embedded dialogue manager then classifies the dialogue contribution of the input
utterance by keeping track of the dialogue moves of the user. Fig. 4 shows our
implementation (i.e., finite state machine) of managing a simple human-robot
dialogue in which the user tells the robot facts that he/she has observed or tasks,
and the robot asks for more information if needed.

Fig. 4: The finite state machine for a simple human-robot dialogue

The natural Language Understanding module is used for the translation to
its semantic representation. With the Speech Recognition module move and
the semantic information of the speech, the Natural Language Understanding
module decides to update the World Model, which contains the information
from the perceptual model and of the robot’s internal state, and/or to invoke
the Task Planning module for fulfilling a task.



The translation from Speech Recognition Results to semantic representation
consists of the syntactic parsing and the semantic interpretation. In the syntactic
parsing, the Stanford parser [13] is employed to obtain the syntax tree of the
speech. The semantic interpretation using λ-calculus [2] is then applied on the
syntax tree to construct the semantics. Fig. 5 shows an example of semantic
interpretation.

Fig. 5: An example of semantic interpretation

6 Conclusion

In this paper we present our recent progress with our intelligent service robot
KeJia. Our robot is not only capable of perceiving the environment, but also
equipped with advanced AI techniques which make it able to understand human
speech orders and solve complex tasks. Furthermore, through automated knowl-
edge acquisition, KeJia is able to fetch knowledge from open source knowledge
base and solve tasks it has not met before.
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