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Abstract. This paper reports some recent progress on the project Ke-
Jia, whose long-term goal is aiming at the service robots with integrated
intelligence. It focuses on the content ranging from the low-level hard-
ware design to the high-level cognitive functions. These techniques and
the integrated system have been tested in RoboCup@Home standard
tests and other case studies.

1 Introduction

Recently more and more researchers from AI, Robotics and related areas, are
showing their interest in intelligent indoor robots [1,5-7,15,19]. There are three
requirements are challenging them. Firstly, an intelligent indoor robot should
be able to communicate with humans naturally. Secondly, it ought to possess
some degree of autonomy, particularly, autonomously planning for tasks. Finally,
it needs the capability of learning from its experience and humans and thus
reach a higher performance; specifically, we hope the robot can acquire general
knowledge through the human robot dialogue and other sources such as open
knowlege bases.

The motivation of the project KelJia is attempting to develop intelligent in-
door service robots that meet these three requirements. Several general-purpose
approaches to meeting the requirements have been implemented in our robotic
system Kelia for natural language processing [8], for hierarchical task plan-
ning [9], and for knowledge acquisition [7,10]. We have tested these techniques
and the whole system in RoboCup@Home league competitions from the year
2009 as well as other case-studies. In this paper, which serves as the team de-
scription paper of WrightEagle@Home for RoboCup@Home 2013, we concern
ourselves with our latest research progress.

Section 2 gives an overview of our robotic system. The low-level functions
of our Robot KelJia are described in Section 3. Section 4 specifies the details
about the human-robot dialogue management and speech understanding. Sec-
tion 5 elaborates a hierarchical approach to task planning. Finally we conclude
in Section 6.



2 Architecture of KelJia

The hardware architecture of our robot KelJia was designed in 2012 and has
shown its outstanding performance on the RoboCup@Home 2012 competition.
Our robot is based on a two-wheels driving chassis. It is equipped with a lifting
system that could adjust the height of its upper body quickly. A five degrees-
of-freedom (DOF) arm makes our robot agile to fulfill the manipulating tasks
in the indoor enviroments. It has a reach of over 83 centimeters and is able to
hold a payload of up to 500 grams while fully extended. Our robot is about
1.6 meters height and weights about 40 kilograms. For supporting the real-time
environmental perception, our robot is equipped with a Kinect camera, a high-
resolution RGB camera, two laser range finders and a microphone. The 20AH
battery makes a guarantee that our robot could be reliably running in continuous
applications. The computational capability of KelJia is powered by the laptop
setting on the back of robot. The image of our robot Kelia is shown in Fig. 1.

Fig. 1. The robot Kelia

Human-Robot —\ J Speech —/\J Task Plannin
Dialogue 1% | Understanding % ‘ e
Perception i
SLAM ) :

"""""""""" (" World Model —— Motion Planning H Hg;iﬁi{e

*

Fig. 2. Software architecture of KelJia

The software architecture of KelJia is shown in Fig. 2. Robot Operating Sys-
tem (ROS)! have been employed as the infrastructure supporting the commu-

! http://www.ros.org/wiki/



nication between modules in our robotic system. Our robot is driven by input
from Human-Robot Dialogue module. Through the Speech Understanding mod-
ule, the utterances from users are translated into the internal representations of
the robot. These representations are in the form of Answer Set Programming
(ASP) language [11] which is a Prolog-like logical language. An ASP solver is
employed in the Task Planning module to automatically make decisions given
the translated results. The Task Planning module then generates the high-level
plans for users’ tasks. The generated course of actions is fed into the Motion
Planning module. Each action is designed as a primitive for KelJia’s Task Plan-
ning module and could be carried out by the Motion Planning module and then
autonomously executed by the Hardware Control module.

The changes of the external environments and the internal state of Kelia
itself are perceived by the low-level modules (i.e., SLAM, Vision, and Hardware
Control module) and used to update the World Model. The Motion Planning
module deals with a repertoire of (low-level) routines and predefined parame-
ters. For each low-level function of the robot, such as object recognition and
manipulation, there is a routine, which involve uncertainties that could be best
modeled with quantitative mathematical methods.

The integrated system of KelJia has been tested in RoboCup@Home league
competitions in the past four years. We won the 2nd place in the RoboCup@Home
2011 and the 4th place in last year. The high-level cognitive functions have also
been examined in a series of case studies?. At this point, KeJia have shown its
competence in offering the general purpose service with incomplete or erroneous
information, learning operations on a microwave oven through reading a manual,
and acquiring open knowledge from spoken dialogue and from knowledge base.

3 Low-level Functions

3.1 Self-Localization and Navigation

For self-localization and navigation, a 2D occupancy grid map is generated first
from the raw data collected by laser scanners through a round travel within
the rooms aforehand [12]. Then the map is manually annotated with the ap-
proximate location and/or area of rooms, doors, furniture and other interested
objects. Finally, a topological map is automatically generated, which will be
used by the global path planner and imported as a part of prior world model.
With such map, scanning match and probabilistic techniques are employed for
localization. Moreover, VFH+ [20] is adopted to avoid a local obstacles while
the robot is navigating in the rooms. Frontier-based exploration strategy [22]
and Gmapping [12] algorithm are used to explore unknown environment.

2 Relevant videos are available on our website:
http://wrighteagle.org/en/demo/index.php



Fig. 3. Table-top object recognition results

3.2 Visual Perception

Sensors of our vision system consist of Microsoft Kinect and a high-resolution
1394 RGB camera from PointGrey. With the pre-calibrated intrinsic and extrin-
sic camera parameters, we obtain an aligned RGB-D image by combining the
RGB image from 1394 camera with the depth image from Kinect. With such
aligned RGB-D image, our vision module is capable of people awareness and
object recognization and localization.

People Awareness The aligned RGB-D image is transformed into the robot’s
coordinate using ROS ¢f API. Since human will occupy a continuous and almost
fixed-size space, we segment the point cloud into multiple connected-components,
and analyze the shape of each component. Each candidate is then passed into a
pre-trained HOD [18] upper body detector to decide whether it is human or not.
Then a HAAR [21] face detector from OpenCV [4] is used to find and localize
human face. If present, the VeriLook SDK will be used to identify whether it is
known via face recognition.

Object Recognition We follow the approach as proposed in [17] to detect and
localize table-top objects including bottles, cups, etc. The depth image is first
transformed and segmented, then the largest horizontal plane is extracted using
Point Cloud Library (PCL) [16], and point clouds above it are clustered into
different pieces. After that the SURF feature matching against the stored fea-
tures are applied to each piece [2]. The one with highest match above certain
threshold is considered as a recognition. At last, to further enhance the detection
performance and decrease FP rate, we check each recognized cluster and filter
out those vary too much in size. Detection result is shown in Fig. 3.

3.3 Manipulation

We simplified the algorithm described in [14] by tracking a set of marks attached
to arm mechanism, rather than the articulated point cloud model of the arm,



to perform online hand-eye calibration and coordination. The online calibration
error of the vision-manipulator system can be less than 5 mm while the arm
stops moving, which greatly improves the success ratio of manipulation.

4 Dialogue Understanding

The Human-Robot Dialogue module provides the interface for communication
between users and the robot. The Speech Application Programming Interface
(SAPI) developed by Microsoft is used for speech recognition and synthesis.
Once a user’s utterance is captured by the recognizer, it is converted into a
sequence of words. The embedded dialogue manager then classifies the dialogue
contribution of the input utterance by keeping track of the dialogue moves of
the user. At present, the structure of the dialogue is represented as a finite state
transition network. Fig. 4 shows our implementation (i.e., finite state machine)
of managing a simple human-robot dialogue in which the user tells the robot
facts that he/she has observed or tasks, and the robot asks for more information
if needed.

"Can I help you?"

<TASK> "OK."
update world model
plan for the <TASK>

<TASK>
need more informatfon
<STATE>

"I need to know <INFO>."

fail

"Sorry, I can't accomplish the task."

Fig. 4. The finite state machine for a simple human-robot dialogue

\'T have finished the task."

After the dialogue move recognition, the speech is passed into the Speech
Understanding module for the translation to its semantic representation (in the
form of ASP language). With the dialogue move and the semantic representation
of the speech, the Speech Understanding module decides to update the World
Model, which contains the information from the perceptual model and of the
robot’s internal state, and/or to invoke the Task Planning module for fulfilling
a task.



The translation from speech to semantic representation consists of the syn-
tactic parsing and the semantic interpretation. In the syntactic parsing, the
Stanford parser [13] is employed to obtain the syntax tree of the speech. The
semantic interpretation using A-calculus [3] is then applied on the syntax tree to
construct the semantics. Fig. 5 shows an example of semantic interpretation.
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Fig. 5. An example of semantic interpretation

5 Hierarchical Task Planning

In KelJia’s task planning module, a planning problem is described as an ASP
program, and an ASP solver is employed to get its answer sets. Each answer set
is corresponding to a high-level plan for the problem. So far, ASP solvers are not
efficient enough so that the performance of task planning is poor for large scale
problems. However, in the indoor service domains, a typical task (e.g., “clean the
house™) usually contains extensive steps. For instance, we have tested a 47-steps
problem, and it took 25 hours to get a solution. Therefore, the efficiency of task
planning is a chanllenge for KelJia.

Fortunately, there are other opportunities for speeding up resolutions with
current ASP solvers as well as improving the solvers themselves. We proposed
an approach to shorten the length of a plan so that the time could be saved
greatly [9]. Specifically, macro-actions are employed to represent a sequence of
primitive actions of the domain. In the planning procedure a macro-action acts
just as a primitive action. While the adapted problem is solved, a plan includ-
ing macro-actions is generated. Then all macro-actions are refined to primitive
actions. At this point, we define two types of macro-actions. The first one is
the Relevant Object Macros (ROMs), where a predefined sequence of primitive
actions is used to accomplish a sub-task or to handle a certain object with mul-
tiple primitive actions sequently. The second one consists of those macro-actions
learned from small-size problems of the same domain. Some macro-actions can
be refined straightforwardly, that is, replaced by the corresponding primitive
action sequences. But the replacement may be difficult or even impossible in
some cases. A more general way is to take the refinement of a macro-action as
an induced, new planning problem. In the new problem, the initial state is the



state before the macro-action’s execution, the goal state is the state after its
execution, and the actions are all primitive.

With the hierarchical planning method, KeJia completes task planning much
more efficiently. For example, for the problem which has a 47 steps optimal plan
mentioned above, KelJia got a 48 steps plan in 40 seconds with the method.

6 Conclusion

In order to meet requirements addressed in Section 1, we are developing and
integrateing techniques for natural language understanding, hierarchical task
planning, and knowledge acquisition. We are also developing low-leve functions
that are necessary for implementing an intelligent service robot, including self-
localization and navigation, visual perception, and manipulation. In order to
test these techniques and the entire system, we have conducted a series of case
studies involving general purpose service with incomplete or erroneous informa-
tion, acquiring and reasoning with causal knowledge, learning operatations on
a microwave oven through reading the manual, and acquiring open knowledge
from spoken dialogue and from knowledge base.
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