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Abstract. This paper provides an overview of the hardware and software of the AMIGO
robot, which competes in the RoboCup@Home competition on behalf of Tech United Eind-
hoven. The main changes in hardware are new omni-wheels and EtherCAT I/O boards for
the robotic arms. Among the main software improvements compared to last year are 3D
navigation, reasoning and perception.

1 Introduction

Tech United Eindhoven is the RoboCup team of the Eindhoven University of Technology, com-
peting in the Middle Size League, Humanoid League and @Home League. Tech United has been
competing in the @Home league for two years, scoring first place at the 2012 RoboCup Dutch
Open and a seventh place at RoboCup 2012. Tech United Eindhoven consists of PhD, MSc and
BSc students and staff members from different departments within the Eindhoven University of
Technology.

This Team Description Paper is part of the qualification package for RoboCup 2013 in Eind-
hoven and describes the current status of the @Home activities of Tech United Eindhoven. First,
the hardware and software of the AMIGO robot platform will be introduced, followed by a de-
scription of this year’s main research improvements in the fields of navigation, reasoning and world
modeling and perception.

2 The AMIGO Robot

Our robot in the @Home League is AMIGO, which is an acronym for: Autonomous Mate for Intel-
liGent Operations (see Figures 1 and 2). This human-size robot has a custom made holonomic base
platform, an extendable body, two 7 Degree-of-Freedom anthropomorphic arms and a 3D vision
system. It is described in more detail in Section 2.1. All CAD drawings and electrical schemes
can be found on Robotic Open Platform (http://www.roboticopenplatform.org/wiki/AMIGO),
while a simulation model can be found on the ROS Wiki (http://www.ros.org/wiki/Robots/AMIGO).
The software on AMIGO is developed in ROS and Orocos as is elaborated in Section 2.2.

2.1 AMIGO Hardware

The base platform of AMIGO has originally been designed for a novel Middle Size League soccer
robot [1]. By upscaling this design, much knowledge and experience obtained in robot soccer could
be reused in the development of a domestic service robot. The frame design of the AMIGO is based
on stiffness and can be compared to the Eiffel Tower: four legs are connected to a central box.
These legs and the central box are made out of aluminum and steel sheets, hence resulting in
a construction that is light as well as stiff. Furthermore, using sheet metal reduces the amount
of milling required for manufacturing, hence it is both easier and less expensive to manufacture.
The legs are used to house the motors and the wheels: four omniwheels are used with the axes
along the diagonals of the base platform. This year, the original wheels with ten rollers around
the circumference have been replaced by wheels with 28 rollers. Additional bearings at the outer
side of the robot keep the wheels perpendicular to the surface. As a result of these modifications,



Fig. 1. The AMIGO robot. Fig. 2. AMIGO without covers.

AMIGO has a much smoother ride. The main advantage an omniwheel platform has is that it
is holonomic, i.e., it can move instantaneously in any direction, without having to turn first.
To maximize stability and the available space for peripheral equipment, it is chosen to use four
omniwheels.

The omniwheels are driven by 24 V Maxon motors. The required current for the motors is
provided by Elmo Violin 25/60 amplifiers. The brain of AMIGO consists of four mini-PCs with
Core i5 and i7 processors, which are placed on the base platform. The PCs are connected to the
sensors and actuators using Beckhoff EtherCAT stacks, containing terminals for digital and analog
I/0, encoder modules and RS485 modules. Finally, four 24 V, 3.3 Ah Makita power tool batteries
are placed on the base platform to provide the necessary power to the robot.

On top of the base platform, the upper body of the AMIGO is mounted using a ball screw
spindle mechanism. This way, the robot is able to adjust the height of the upper body: in its lower
position, the AMIGO is able to pick up objects from the floor. In its upper position, the robot has
the size of a small adult. This way, it is able to operate most features in a domestic environment,
while at the same time having a friendly appearance.

For manipulation, two 7-Degree-of-Freedom (DoF) Philips robotic arms are attached to the
upper body. The shoulder, elbow and wrist joint are equipped with a differential drive. Due to
this construction, two motors are required to manipulate one DoF. This way, a very compact
design of the arm is possible. Each arm can lift up to 1.5 kg when fully stretched. With an own
(moving) mass of 3.9 kg this leads to a mass-payload ratio of 2.6 : 1. Furthermore, force sensors
are present to measure the force in the joints, so that force control can be applied. This year, the
USB I/0 boards have been replaced by newly developed EtherCAT based I/O boards. Each board
can control three motors, with connections for encoders, force sensors, absolute position sensors,
PWM output as well as spare analog and digital I/O.

For navigation and object recognition, the AMIGO relies on various sensors. On the base of the
robot, a Hokuyo laser range finder (LRF) and an XBox 360 Kinect are placed. The LRF provides a
2D image of its surroundings at a 40 Hz rate, which is used for localization and obstacle avoidance.
The Kinect provides 3D images to detect obstacles above or underneath the field of view of the
LRF (see Section 3.2). A second Kinect camera is placed on top of the robot, mounted on a pan
and tilt mechanism so that it can turn left and right as well as look up and down. This camera is
used for navigation as well as people and object detection and recognition.

2.2 The AMIGO Software

The software on the AMIGO robot is developed within ROS [10] and Orocos [2]. ROS basically
has two main features: Firstly, it provides a structured communication layer on top of the host



operating system of a computer cluster. This is based on a graph architecture where processing
takes place in nodes that may receive, post and multiplex messages regarding sensors, actuators,
planning and control. Secondly, ROS has a large suite of user-contributed packages and stacks for
various functions, e.g., planning, navigation, perception and simulation. The AMIGO software is
partly based on these packages, which have been extensively modified for this robot. To control
the hardware, the Orocos Real-Time Toolkit (RTT) is used, which is developed to build highly
configurable and interactive component-based real-time control applications.

3 Localization and navigation

The navigation system of AMIGO takes in data from various sensors, odometry, and a navigation
goal, and outputs velocity commands to the holonomic mobile base. It is based on the ROS
navigation stack. The system consists of a number of components that will be described next.

3.1 Localization and mapping

AMIGO’s navigation can be initialized with or without an a-priori, static map. When initialized
without a static map, a 2D map is acquired simultaneously with localization using openSLAM
Gmapping software. Gmapping is a highly efficient RaoBlackwellized particle filter used to learn
grid maps based on laser range data and odometry information [6,7]. When using a map, AMIGO
localizes itself using an Adaptive Monte Carlo Localization (AMCL) algorithm.

3.2 3D environment representation

AMIGO uses a 3D representation in order to navigate collision-free in a domestic environment
(see Figure 3). The octree-based volumetric representation OctoMap is used to efficiently acquire
a 3D voxel grid at a resolution of 5 cm. Each voxel is marked as occupied, free or unknown. The
occupancy of a voxel is modeled probabilistically, which yields robustness against sensor noise and
a changing environment. The 3D map is acquired by probabilistic integration of the pointcloud
data from the base and top Kinect and the laser range finder. Next, each column of the 3D map is
projected down into two dimensions where it is assigned a cost. Columns with an occupied cell are
assigned a lethal cost, meaning that they are untraversable. The occupied cells are subsequently
inflated up the radius of AMIGQO’s base and also marked as untraversable. Up to a user-specified
inflation radius the cost decreases according to an exponential decay function. The resulting 2D
map is used by the global and local planner that are described next.

3.3 Global planner and local planner

A minimum cost path from a start position to a goal position on the 2D map is obtained by an
A* algorithm. As opposed to Dijkstra’s algorithm, which is available as a standard ROS global
planner, it uses an Euclidian distance to the goal position as a heuristic. As a result, the search
time is significantly reduced with respect to Dijkstra’s algorithm.

The local planner is seeded with the plan produced by the global planner, and attempts to
follow it as closely as possible while taking into account the kinematics and dynamics of the robot
as well as the obstacle information stored in the 2D map. It smooths the global path and generates
velocity commands for the mobile base that will safely move AMIGO towards a goal.

3.4 Planning Interface

AMIGO uses an interface to deliberate a navigation goal received from a high-level executive to the
global and local planner. This interface monitors the progress of execution and has a replanning
strategy to avoid detected obstacles.



Fig. 3. 3D environment representation using an octomap. Each column of the 3D map is projected down
to form a 2D costmap for navigation. Light red cells indicate completely unknown space. Bright red cells
represent an occupied column in the 3D map and are assigned a lethal cost. Black cells represent inflated
obstacle cells also having a lethal cost. From black to white cells (free space) the cost decays towards zero.

When an obstacle is encountered that blocks the global path, the interface allows AMIGO
to keep moving up to a predefined distance to the obstacle. Next, AMIGO has a prespecified
amount of time to find a new plan. If this time is exceeded the interface will report failure to the
high-level executive. If a new plan is found it will depend on the length of this new plan whether
it is executed immediately or not: the larger the difference in distance between the original plan
and the re-plan, the longer AMIGO will wait before executing it. This ensures that if a path is
blocked for a short time (e.g., by a moving obstacle), a re-plan leading to an unnecessarily long
plan is not executed immediately. If the new plan is of approximately equal length to the original
plan it will execute it immediately to avoid unnecessarily long waiting. Furthermore, the interface
automatically updates the goal position within a predefined goal area size. This ensures that if
the goal pose is in collision with an obstacle it will be updated to closest by feasible pose. This is
especially desirable if an initially free pose close by obstacles becomes infeasible during navigation
due to, e.g., sensor noise.

4 Reasoning about the World

In the RoboCup-setting, AMIGO operates in a complex and dynamically challenging environment:
it is not known beforehand which objects are present, where objects are located, and objects and
persons may move over time. Furthermore, different types of objects may need to be treated
differently. To deal with such an environment, AMIGO maintains a model of the world in which it
stores attribute information, such as position, velocity, color and name of the objects and persons
it encounters, and with which it keeps track of those attributes over time. Furthermore, a reasoning
component links the stored and tracked objects and properties to the concepts which the executive
uses to make decisions with. This enables the executive to query the world model in a semantic
way, e.g., by asking: “Are there any objects on the table which belong in the kitchen?”, or “what
is the class of the nearest object?”.



4.1 World Modeling

The world model is constructed based on observations received from sensors by fusing the received
information into one global, consistent belief state. Due to measurement noise, partial observability
and incompleteness and fallibility of perception routines (e.g., sometimes only basic features such
as color information and position can be retrieved from a sensor reading), the world model has to
be able to cope with uncertainty. Therefore, a probabilistic, multi-hypothesis approach is adopted,
based on multi-target tracking literature [4, 11].

Objects are represented in the world model by sets of attributes and object IDs. Each object
attribute (typically position, color and class) is represented by a probability density function
which explicitly describes the uncertainty of the given object property. For example, the position
of a certain object-3 can be represented by a Gaussian or Mixture of Gaussians, while its class
is described by a discrete distribution over all possible classes. If a new observation is associated
with a given object, the properties of the object are updated using Bayesian update rules. For
example, in the case of a single Gaussian representation, a Kalman update step is performed.

Before object attributes are updated, a data association method based on multi-hypothesis
tracking [11] is used to determine which observations originate from which objects. Maintaining
multiple plausible measurement/object associations prevents the world model from making in-
correct association decisions: instead of picking one possibility, the algorithms postpones its final
decision until enough evidence is collected to make an appropriate choice. This approach is partic-
ularly useful in situations with dynamic environments, occlusions or partial visibility of a scene.
An anchoring [3] based approach is combined with the multiple hypothesis based data association.
This enables associating measurements with semantically annotated objects, e.g., measurement
z originates from object object-2 which is associated with red and coke-can, and it facilitates
symbol grounding, e.g., the mapping of the color green to a region in Hue Saturation Value (HSV)
color space.

The world model is described in more detail in [5]. Furthermore, the world model was re-
cently released under the name WIRE (World Informer for Robot Environments) within the
ROS framework. The source code and extensive documentation and tutorials can be found at
http://www.ros.org/wiki/wire.

4.2 Reasoning

To provide an expressive, semantic interface to the world model, a reasoning component was devel-
oped and implemented in SWI-Prolog! which acts as ‘glue’ between the WIRE world model and
executive. While the world model represents and maintains the properties of objects in the world,
the reasoning component contains knowledge to interpret the property values and link them to a
set of predicates and facts. For example, the reasoner can be used to express that a plate belongs
to the kitchen, that X is on top of Y if X’s position is above the area that Y occupies, etc. The
reasoner advertises a ROS service that can be used to query the world model in such a way, and
provides interface implementations for both C+4 and Python. This allows all C++ and Python
modules to execute queries such as:

?- property(X, position, P), type(X, bottle)

which binds X to the ID of an object which is of type bottle (if it exists) and binds P to the
corresponding location. Similarly:

?7- property(X, near, amigo), belongs_to(X, kitchen)

queries the world model for objects near AMIGO that belong to the kitchen.
The possibility of combining a probabilistic world model with a logical representation language
provides AMIGO with an expressive and powerful tool to reason about the world.

! http://www.swi-prolog.org/



4.3 Executive Integration

AMIGO’s executive component, i.e., the module that decides which actions need to be taken
to fulfill given task, is implemented as a SMACH state machine. Since the reasoning component
described above provides a semantic interface to the world model, the state machine itself does not
need to maintain information in a dedicated memory. Instead, the reasoner is queried whenever
information about the world is needed. For example, the explore state can ask the reasoner for
nearby interesting locations. Which location is interesting depends on the challenge, the rules for
which can be coded in a SWI-Prolog knowledge file. The combination of a world model, reasoner
and state machine executive realizes a powerful decision-making module: the rules and dynamics
of the challenge can be coded in a transparent manner within a state machine, while the world
information and world dynamics are taken care of by a probabilistic framework.

4.4 Human-Robot Interaction

For many challenges human-robot interaction is a key prerequisite. We have developed a basic
speech interpreter that is used during all challenges. As an input it gets a parameterized request
from the executive, e.g., give me a name within 10 s. The module asks the necessary questions
and asks for validation. For robustness reasons, the speech interpreter loads multiple dictionaries
in parallel and only activates the ones associated with the request.

For more advanced human robot communication as needed during, e.g., the General Purpose
Service Robot challenge, the module has a notion of the knowledge needed for interpreting more
advanced commands:

e object/location categories and their members
e actions and their synonyms, e.g., both the get and pick action require to transport an object
from location A to B

The module keeps asking questions until all the available knowledge is received and confirmed and
then sends the results to the executive that uses the knowledge for generating a plan.

4.5 Plan Generation

For certain challenges, e.g., the General Purpose Service Robot, the order in which actions have
to be performed can not be pre-programmed in a static state-machine. In these challenges, the
desired action sequence depends on a combination of the given instruction, the state of the robot
and the state of the environment. To compose a viable action sequence, therefore a search method
is applied to a symbolic representation of the robots capabilities. To parametrise the search, the
initial state of the world is derived through the reasoner (Section 4.2). The desired goal state is
derived through a refinement dialog controlled by the Human-Robot Interface (Section 4.4). The
used search method is based on a simple Means-End Analysis, and encoded as unification rules in
SWI-Prolog.

5 Perception

Any autonomous robot performing tasks needs some collection of perceptual routines for recogniz-
ing and detecting objects and persons. This section explains the Perception Infrastructure (Peln)
which accommodates all perceptual routines used for this purpose.

5.1 Perception Infrastructure

The main observation that led to the development of Peln was that many subparts of perceptual
system contained similar or identical pieces of code, e.g., receiving (synchronized) sensor data,
mapping images to depth data, communication with the world model. It was decided to develop



an infrastructure that was able to perform the general parts and implement modules for the actual
detection or recognition of objects and persons. More specifically, we have implemented a base
class implementing the basic functionality mentioned above. The base class uses ROS nodelets to
avoid needles data copying. We have defined different derived classes for segmentation, learning
and recognition of objects or persons. All modules can be switched on or off individually by sending
requests to the Peln supervisor. The supervisor therefore acts as an interface to the executive. All
requests are validated and constraints are checked, e.g., are the required models available or are
the required parameters provided.

5.2 Peln modules

Various algorithms are implemented in Peln. For people detection/recognition, existing methods
are wrapped in Peln wrappes:

e Leg detection using a 2D laser [9]
o Face detection
e Eigenfaces based face recognition

In addition, we have implemented OpenCV and PCL based modules for

e Colored blob detection
e Tabletop segmentation
o Viewpoint Feature Histogram matching [12]

Finally, we have implemented an adapted version of Linemod [8], a template based object recogni-
tion algorithm that allows for combining multiple modalities. A screenshot can be seen in Figure 4.

Fig. 4. Example of the Linemod object recogni- Fig.5. Camera view with the gripper with ar-marker
tion algorithm. The light area on the bottom right as well as object to grasp in sight.
figure indicates the beer bottle.

5.3 One sample visual feedback in manipulation

In a normal grasping procedure, the robot first perceives the object, then repositions itself such
that it can easily grasp the object and finally performs the actual manipulation. However, last
year’s perception framework did not work robustly when standing too close to a table. As a
result, the robot could not perceive the object after repositioning, introducing localization errors
in the manipulation accuracy. Together with the significant backlash in the robotic arms and small
inaccuracies in the kinematic model, this often resulted in the robot grasping next to the object
it was supposed to grasp.
To improve this, two improvements have been implemented:



e With the new perception algorithms, the object can now also be seen after the robot has

repositioned itself, preventing localization inaccuracies from affecting manipulation accuracy;

e After moving the end-effector close to the object, an ar-marker on the gripper is used to

determine the position of the object relative to the end-effector, which can be seen as one
sample visual feedback. Assuming that the pose-error of the end-effector does not change
during the final grasping movement, this is sufficient to reliably grasp objects.

See Figure 5 for a screenshot of the gripper with the ar-marker with the object.

6

Conclusions

Compared to the previous year, there are improvements on various topics. The main hardware
modifications are omni-wheels with more rollers on their circumference, resulting in a smoother
ride, and EtherCAT I/0 boards to replace USB interfaces. More improvements can be found in
software:

e Navigation of the base platform has been completely re-implemented with a new planning

interface, 3D environment representation and both global as well as local planner.

e A reasoning component has been developed that forms an intelligent interface between the

world model, containing a global, consistent belief state of the environment, and the task
executive which can query the reasoner in a semantic way.

e A new modular perception infrastructure has been developed which contains a collection of

perception algorithms for detecting, segmenting and recognizing people and objects. Further-
more, an adapted version of Linemod is used for object recognition.

With these improvements, we hope to improve on last year’s performance and are looking forward
to RoboCup 2013 in Eindhoven!
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