-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathSpring.lua
182 lines (148 loc) · 4.64 KB
/
Spring.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
-- Simulates the motion of a critically damped spring
-- @author fractality
--[[
MIT License
Copyright (c) 2020 Parker Stebbins
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
--]]
------------------------------------------------------------------------
-- API:
-- Spring Spring.new(double damp, double freq, vector pos)
-- void Spring:SetGoal(vector goal)
-- void Spring:SetFrequency(double freq)
-- void Spring:SetDampingRatio(double damp)
-- vector Spring:GetPosition()
-- vector Spring:GetVelocity()
-- vector Spring:Update(double dt)
-- void Spring:Reset(vector state)
--
-- Notes:
-- The state vector type must implement the following metamethods:
-- vector __mul(vector, double)
-- vector __add(vector, vector)
-- vector __sub(vector, vector)
------------------------------------------------------------------------
local Spring = {}
Spring.__index = Spring
local pi = math.pi
local exp = math.exp
local sin = math.sin
local cos = math.cos
local sqrt = math.sqrt
local EPS = 1e-4
function Spring.new(dampingRatio, frequency, position)
assert(type(dampingRatio) == "number")
assert(type(frequency) == "number")
assert(dampingRatio * frequency >= 0, "Spring does not converge")
return setmetatable(
{
d = dampingRatio,
f = frequency,
g = position,
p = position,
v = position * 0 -- Match the original vector type
},
Spring
)
end
function Spring:Reset(position)
self.p = position
self.v = position * 0
end
function Spring:SetGoal(newGoal)
self.g = newGoal
end
function Spring:SetFrequency(newFreq)
self.f = newFreq
end
function Spring:SetDampingRatio(newDamp)
self.d = newDamp
end
function Spring:GetGoal()
return self.g
end
function Spring:GetPosition()
return self.p
end
function Spring:GetVelocity()
return self.v
end
function Spring:Update(dt)
local d = self.d
local f = self.f * 2 * pi
local g = self.g
local p0 = self.p
local v0 = self.v
local offset = p0 - g
local decay = exp(-d * f * dt)
local p1, v1
if d == 1 then -- Critically damped
p1 = (offset * (1 + f * dt) + v0 * dt) * decay + g
v1 = (v0 * (1 - f * dt) - offset * (f * f * dt)) * decay
elseif d < 1 then -- Underdamped
local c = sqrt(1 - d * d)
local i = cos(f * c * dt)
local j = sin(f * c * dt)
-- Damping ratios approaching 1 can cause division by small numbers.
-- To fix that, group terms around z=j/c and find an approximation for z.
-- Start with the definition of z:
-- z = sin(dt*f*c)/c
-- Substitute a=dt*f:
-- z = sin(a*c)/c
-- Take the Maclaurin expansion of z with respect to c:
-- z = a - (a^3*c^2)/6 + (a^5*c^4)/120 + O(c^6)
-- z ≈ a - (a^3*c^2)/6 + (a^5*c^4)/120
-- Rewrite in Horner form:
-- z ≈ a + ((a*a)*(c*c)*(c*c)/20 - c*c)*(a*a*a)/6
local z
if c > EPS then
z = j / c
else
local a = dt * f
z = a + ((a * a) * (c * c) * (c * c) / 20 - c * c) * (a * a * a) / 6
end
-- Frequencies approaching 0 present a similar problem.
-- We want an approximation for y as f approaches 0, where:
-- y = sin(dt*f*c)/(f*c)
-- Substitute b=dt*c:
-- y = sin(b*c)/b
-- Now reapply the process from z.
local y
if f * c > EPS then
y = j / (f * c)
else
local b = f * c
y = dt + ((dt * dt) * (b * b) * (b * b) / 20 - b * b) * (dt * dt * dt) / 6
end
p1 = (offset * (i + d * z) + v0 * y) * decay + g
v1 = (v0 * (i - z * d) - offset * (z * f)) * decay
else -- Overdamped
local c = sqrt(d * d - 1)
local r1 = -f * (d - c)
local r2 = -f * (d + c)
local co2 = (v0 - offset * r1) / (2 * f * c)
local co1 = offset - co2
local e1 = co1 * exp(r1 * dt)
local e2 = co2 * exp(r2 * dt)
p1 = e1 + e2 + g
v1 = e1 * r1 + e2 * r2
end
self.p = p1
self.v = v1
return p1
end
return Spring