-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGNAT.PlanformTool.pyt.xml
229 lines (229 loc) · 24.5 KB
/
GNAT.PlanformTool.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
<?xml version="1.0"?>
<metadata xml:lang="en"><Esri><CreaDate>20160216</CreaDate><CreaTime>11074400</CreaTime><ArcGISFormat>1.0</ArcGISFormat><SyncOnce>TRUE</SyncOnce><ModDate>20171019</ModDate><ModTime>202230</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>ItemDescription</ArcGISProfile></Esri><dataIdInfo><idCitation><resTitle>Stream Sinuosity and Planform</resTitle></idCitation><idAbs><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Sinuosity is a ratio of the sinuous length of stream or valley reach the to straight-line distance for that same reach. Planform is a ratio of the sinuosity of a stream reach to the length of the encompassing valley. The </SPAN><SPAN STYLE="font-weight:bold;">Stream Sinuosity and Planform </SPAN><SPAN>tool calculates sinuosity (per segment) for valley centerline and stream networks. The tool also transfers the valley sinuosity to the stream network and calculates the planform metric.</SPAN></P></DIV></DIV></DIV></idAbs><idCredit>South Fork Research, Inc. Kelly Whitehead, Jesse Langdon</idCredit><searchKeys><keyword>GNAT Sinuosity Planform</keyword></searchKeys></dataIdInfo><distInfo><distributor><distorFormat><formatName>ArcToolbox Tool</formatName></distorFormat></distributor></distInfo><tool name="PlanformTool" displayname="Stream Sinuosity and Planform" toolboxalias="GNAT" xmlns=""><parameters><param name="InputFCStreamNetwork" displayname="Input Segmented Stream Network" type="Required" direction="Input" datatype="Feature Layer" expression="InputFCStreamNetwork"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Segmented stream network feature class (i.e. flowline, centerline, etc). Stream sinuosity values will be calculated for each segment. New attribute fields will be appended to this dataset.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="InputFCValleyCenterline" displayname="Input Segmented Valley Centerline" type="Required" direction="Input" datatype="Feature Layer" expression="InputFCValleyCenterline"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Segmented valley bottom centerline features. Valley sinuosity will be calculated for each segment.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="InputFCValleyPolygon" displayname="Input Valley Bottom Polygon" type="Required" direction="Input" datatype="Feature Layer" expression="InputFCValleyPolygon"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The valley bottom polygon of the stream network. Required input for the </SPAN><SPAN STYLE="font-weight:bold;">Transfer Line Attribute </SPAN><SPAN>tool. </SPAN></P><P><SPAN STYLE="font-style:italic;">Note: This required input will be depreciated in a future version of this tool.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="OutputFCValleyCenterline" displayname="Output Valley Centerline with Sinuosity Attribute" type="Optional" direction="Output" datatype="Feature Class" expression="{OutputFCValleyCenterline}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Output polyline feature class for storing the valley bottom centerline with calculated sinuosity.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="RiverscapesBool" displayname="Is this a Riverscapes Project?" type="Optional" direction="Input" datatype="Boolean" expression="{RiverscapesBool}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Indicates if this process is part of an existing Riverscapes project.</SPAN></P></DIV></DIV></dialogReference></param><param name="projectXML" displayname="GNAT Project XML" type="Optional" direction="Input" datatype="File" expression="{projectXML}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>XML file which stores information on the associated Riverscapes project.</SPAN></P></DIV></DIV></dialogReference></param><param name="realization" displayname="Realization Name" type="Optional" direction="Input" datatype="String" expression="{realization}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Please select an existing realization name from the Riverscapes project. </SPAN></P></DIV></DIV></dialogReference></param><param name="analysisName" displayname="Segmentation Name" type="Optional" direction="Input" datatype="String" expression="{analysisName}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Select a Riverscape analysis associated with this realization.</SPAN></P></DIV></DIV></dialogReference></param><param name="attributeAnalysisName" displayname="Attribute Analysis Name" type="Optional" direction="Input" datatype="String" expression="{attributeAnalysisName}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Name for the attribute analysis which will be generated by Calculate Threadedness tool.</SPAN></P></DIV></DIV></dialogReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Sinuosity is a ratio of the sinuous length of stream or valley reach the to straight-line distance for that same reach. Planform is a ratio of the sinuosity of a stream reach to the length of the encompassing valley. The </SPAN><SPAN STYLE="font-weight:bold;">Stream Sinuosity and Planform </SPAN><SPAN>tool calculates sinuosity (per segment) for valley centerline and stream networks. The tool also transfers the valley sinuosity to the stream network and calculates the planform metric.</SPAN></P></DIV></DIV></DIV></summary><usage><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Stream Sinuosity and Planform </SPAN><SPAN>tool uses the following calculation method:</SPAN></P><P><SPAN>1. Use </SPAN><SPAN STYLE="font-weight:bold;">Sinuosity By Stream Segment </SPAN><SPAN>tool for stream and valley centerlines</SPAN></P><P><SPAN>1. Convert segment ends to points</SPAN></P><P><SPAN>2. Convert points to line to find straight line distance</SPAN></P><P><SPAN>3. Calculate sinuosity (straight distance / segment distance)</SPAN></P><P><SPAN>2. Transfer valley bottom sinuosity to stream centerline using </SPAN><SPAN STYLE="font-weight:bold;">Transfer Line Attribute </SPAN><SPAN>tool</SPAN></P><P><SPAN>3. Calculate planform metric for each divided segment</SPAN></P></DIV></DIV></DIV></usage></tool><mdHrLv><ScopeCd value="005"/></mdHrLv><Binary><Enclosure rel="side-panel-help"><Data EsriPropertyType="Image" OriginalFileName="thumbnail.jpg">/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK
CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFJAQoDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9RaKK
KACiilUZYCgD5d+MrHxN+0NoulH5VhaztP8Avp95P/kQ/lX1EcZOOlfMfwzjHjb9pLWNYzmCye5u
VyuQcfuUH/jwYH/Zr6br6/iD90sLhP5Kav6vf8j8y4Ji8RLMMze1atK3+GOi/Nr5BRRRXyB+mhRR
RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/j
LWB4f8JazqRODa2csoz/AHgpx+uK2K4H49OyfCLxIVZlPkxjKnHBlQEflXbgqSrYqlSltKUV97SP
KzbESwuXYjEQ3hCcl8otnnX7I+hsmm+IdbkAbzpo7ONj975Bvf8APen5GvoOvLf2Z0VfhLp5VVBa
5uCxAxk+YRk+vAA/CvUq9PP60q2aV5S6St92n6Hg8G4WOE4fwkIdYqXzl7z/ADCiiivnz7MKKKKA
CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAriPjZp
8+p/CnxJBbp5kv2YS7R1IR1dv0U129IyrIrK6hkYYZT0IPUV0Yes8PXhWSvytP7nc4cdhVjsJVws
nZVIyjf/ABJr9Tx39lrXrbUPh3JpkZxd6bcv5q+qyEujD2PzD/gBr2OvlTw1eD4DfHK80+7LQ6Hd
sYTI44EDndFJ9FOAT6Bu9fVFvPFdQJNBKk8Mg3JJGwZWHqCOor6DiLDKni/rVPWnW95P13X3/g0f
F8E5g6+WrL6+lbDN05L/AA6J+jWl+rTH0UUV8ufoQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU
UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxXxM+FGkfFCxt4755bS8tixgvLcDeoP
VWB6rnBx7cEZNeLXnwV+I3w13XPhTWZNQtVOTDZSGOTvyYW+VvwJPtX09RXv4LO8XgafsE1Kn/LJ
XX+f4nxmbcJ5bm1Z4uSlTr/zwk4y8vJ/NX8z5al+PXxK8OyWlxrek+XZQyiKf7Tp7QeeeTt3kcNg
HGPToa+jfCPizTvG2gWur6XL5ltOOVb78bD7yMOxB/x6VZ8QaDZeKdFu9K1KLz7K6QpIp6j0YHsQ
cEH1FfA2r/theEP2I/i9q/gzxfdalqvyj7VY6LEk7QblDwTMGdFVmQr8ud21gSB8ufQxFTAZnhJ1
acI0atPWy0Uk+3mv68vEwVHOOH8zpYevWnisPW05mm5U5LZvf3Wt36vpr+hFQ3d7b2EYkuZ4reMs
FDyuFGT0GT3rnPhf8UPDPxm8C6X4w8IapHq+gakhaC4RShBUlWR1YAqysCCpHBFX/F/hKx8aaLJp
t+GEbEOkiH5kcZww9epr5Wmoc6VR2XU/SpuXI3TV30NqisXw5preFPDtrZ3+qNemEKn2m5KoOwCj
2z0ySeeprbqZxUZNRd137jjJySbVn2EoooqCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKK
KKACiiigAooooAKKKKACiiigAooooAK/GT9vz9g/4u3X7Rnifxj4Z8O3vjLw14ovTfQXunjzHtHZ
RvhuFzmMIQcOfk2bTuB3Kv7N0fN/Bjf/AA56Z7ZpW1uO+lj4y/4Jg+EYvhB8FbvwPqmoeZ4mudTm
1qa1JGxBJDDGY42BIbb5OT7sT0r7Nr5Iu/BuqeLPDP8AwsPw7bLpuv2d/cxalpmmgqIZIpWXzIgS
T90KxXvuyAORXtHwV+M0HxJsDZX/AJdt4ht1zJGvC3CDH7xPTryvbr0PH1OOy2lUw6x+Xu9PRST3
g/Pyfc/PMpz7E0MdLJs7SjXbbhJaRqRv07SW1v137Txh4SsvGuhy6be7lVjvjlTrG4+62O+PSptD
tT4b0PTrC+1P7ZPGqwC6uCEaZuwAz17DqeOcnmtWub8e+CbbxxowtZXMF3C3m2typOYpMcHjse//
ANavCpVOdRoVZWhe+17ef+Z9zUhyuVanG87W7X/rodJRWboMF3peh6fbarfre36osUlyfl81/QZ6
ntnqcZrSrmlHlk0nfzN4y5km1YKKKKkoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo
oooAKKKKACiiigAooooAKWk3DcVyCwGSueQPXFFAHKeE4/Cvh/xFr+g6JLHFq81y2s6laCR3YST7
cudxIUEBcKOAOgrxn42/De8+H+vR+PfChNpEkwe5hhBH2eQ8bwB/yzboR2J9Dx603ge/h+NCeLra
W3GmzaIdNu4WLeaZFlLo6gDB4wCSeg6d67O4t4ry3lgnjWaGVCkkbjKspGCCPTFetlmY1Mtr+0ir
xeko9JLqv8j5vPsjo57hPYTfLOOsJreMls1+q6+tmcr8MfiRYfEzw4moW2IbyLEd5aE8wyY7eqnk
g/h1BA66vlbxToGrfs5/EC313Rw0/h68cqE5KlCctbvz1A5Vj1wD2Ir6V8M+JdP8X6Ha6tpkwntL
hdwP8SHujDswPBFdubZdTw/Li8I+ahU2fZ9YvzX9bHlcNZ5WxvtMtzJcmLo6SX8y6Tj5Prb8mjM+
IHgmPxvo6wCd7S/tn860uFYgJIBxux29+o6itjRILvT9JsbbU75L2/VAklxt2ea/Xgd+Pzxmr9cx
4+8DReN9NhQXUtjf2j+daXMbHCP7gHke/Udq8mnV9pGOHqytBPe17X/G3dfM+uqU/ZuVenG8mtr2
v+lzp6Kw31aLwb4XtbjxFqYkeFI4ri8KHDyHjICjOM+3QZPetWx1C11S1S5s7mK6t3GVkhcMp/EV
zypyiua143tfobxqRk+Xra9upPRRRWRoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU
UUUAFFFFABXkniDWNTvv2h9G0SXW5tI0XT9JbVktYWVRfybmRlcnqoGeO2wkYPNet15D+0XZ+EpN
J0KTxD4d1DxBqdxefYdLh0mQw3BldSxTzAy4QheQc84wM0hnjPhfUDbf8I743TVL6fxnrHi6S1it
/OdkvLNWCSpt6bV3Zz74+n2K3DEDpmvm/wANar8Q9L8TeG9G0X4a6f4f0O3tpDaWWpOZfIAcGWU3
IXckjA4wc5JzzX0cpJUEja2OVznHtmq6E9TzX49apqHh3w5oWs2N5PaxWOu2Ru44ZGUTQu/llGA+
8NzIcHjivTGwSSOnaqGuXSWGi313Ja/bVtYWuPs/GXKAsAM8ZyOtUPAfiuPx14L0XxBFD9mXUrVL
g2/meZ5LEfNGWwMlWyucDpSGWvE3hvT/ABdod1pOqQ+fZ3C7WA4ZT2ZT2YHkGvmfwzrWrfs3/ECf
SNXElz4fvG3M8a8SJ0WdP9odGX8PQ19V1ieMPBej+O9IfTtZtRcQnlJF4khb+8jdj+h75r6DK8yj
hYzw2KjzUZ7rqn/MvNf1sfFcQZDUzGdLMMvn7PF0fhl0a6wl/df4Xfdl7RdasfEWlwajpl1HeWUy
7kmjOQfY+hHcHkVdr5W1Twz4y/Zx1ptV0ic6n4ekYB2KkxOpP3JkH3G9GHHPB5K17r8N/ixonxLs
g1jJ9l1JE3T6dMw8yP1Kn+Nc/wAQ9sgHirzDJ3h6f1rCy9pQf2luvKS6P+tNjPJeJ442s8uzGn7D
Fx3g9pecH1T7b+qVzr7uzt9QtpLe6gjubeQbXimQMrD0INZ/h3wvpnhOzmttJtFtYpZDMyb2ILEe
pyQPbtWrRXgKpNRcE9H06H2zhFyU2tV1ON8J33jSLVhp/iLTrOa18osNUtJNoLDA2lO5Of8AZxjv
XRtr+mrqjaa1/bpqCqrm2aQB8HoQD1q/XPeJfh/oHi6RZdS09JLlcbbqMmOUY7bh1Hsciun2lGtU
5qseVW+yuvezf5WOfkq0adqb5n/efT1S/O50NFYPjLVNb0fTYrjQtJj1aVZB50DPtIjx/CB1Ofy9
DVrwvrp8S6Lb6gbG505pMhre6Xa6kHB+oznB4z6Vi6M1SVbpe26/FbmqqxdT2XXfb9TUooorA2Ci
iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwfG+gX3iLw/LbaVeQaZrCOktlqE9qlwLaR
WHzhHBGdu4Z6jdwRW9Ud1FJcWs0UUnlSyRsiSD+FiCAfwNAHhesfCvxt4butH14eOtS8XXdnqVuZ
NLubgWdvKpkAYZMhUEcHaRz0xzXvLcMR718S6bHCmiXfh/R9A8Q+JJ9Qsp7PWljWSSB9SikBt72G
UnAw+cgYGMZyRX2J4VW+g8M6NBqpA1ZbKL7SpYFvMCKGPvz3p9A6mnLGs0TxuNyOpRge4Iwa5v4d
+GdL8D+G4vDelag9/FpzuH86RGkiZ3aQqwUDbyxwCM49a6avOPBvhrVPD/xk8f3f2GSPQNYisruK
5LDyzcKhSRVXOcnJJOOw5pAej0UUUANmhjuIXiljWWKQFXjkUMrA9QQeorwL4gfs1zx6mdY8C3Q0
6fO/7A0rR7G7mGQfdz/dPA5wcYA9/or08BmWJy2bnh5Wvunqn6r+mfP5xkWAz2iqWNhdrVSWkovy
f6bd0fMOl/HHx58M7hNP8Y6TLqNuDtWS7UxTcY+7KAVfueQSc/er2Pwb8bfCXjVY0ttRWxvG4+x3
+IpM+gOdrfgTXZ6hp1pq9nJaX9rDe2snDwXEYkRvqCMV4343/Zc0LWi1x4fuG0K5xzA2Zbdj9Cdy
H6EjjpXvfWcozLTE0/YTf2oax+ceny+8+O/s/ibIVfAVli6S+xU0mvSfX5v0R7byOvFJXy4NK+MX
wkjVbSS41PS4SMJCftkO3I42Eb1H0ArovDv7WEG5bfxJoUtncLhZJrE5UHuTG+GX6ZNY1OHMTKPt
MFONaP8AdevzX6K51YfjnARmqGaU54Wp2qRdvlJdPNpH0DWH45s9Q1LwjqsGmSvDqDQ5iZPvEghi
qnsSAQD6mtDR9Wtde0mz1Kxl86zu4lmifGMqwyMjsfbtVyvmouVCom1rF7Puu5+g+5iKXuu8ZLdd
n1TMbwbqN9q3hfTbrU7eS2v3iAmjmXaxYcbsdt2M/jWzXMa142/sLxlo+jXVrss9SRgl+0nAlH3Y
9uO/TOepFdPV1oSTVRxsparta/6Coyi04J3cdH62CiiiuY3CiiigAooooAKKKKACiiigAooooAKK
KKACiiigAoLCMFmIVV5JJwAB3zRVHXtNOtaFqWnhzEbu2lgDj+EshXP60hnzt8SfEV1b6tC1/wDF
bVI9I1N2utL0jwfYA3D2pY7WMqbT2xk5zg4716H8GNO8Ha1a2Wv6Bd6tf6jpdo+hyy6xKwukTzDK
UmTABbL5DY6AeleZ+D9K+IXg/wARaPc6L8NzHe6foqaBdNd3Ua2k6xsCk0LA7lyQcg5yCO/Ndl8P
/ET/AA81TxdqPxD1nwzpGoatdR3TW9nebpY2C7NrJk4UALjjOSxJNUv6/r0Ez26uD8f+LdT8K+Nv
AEUUka6Hq19Pp18jINxkaLdAQx+6AUkzjqSBmu7Vg6qyncrAEEdwa5v4g3Xh/R/Dz694ks1u7DRH
F+rNAZjC68CRV9RuPPbrSA6Wio7e4S7t4p4zujlQSKfUEZH86koAKKKKACiiigBa8v8A2hfCNrrv
w41S9WzhfUdPVbmO4Ea+YEVhvG7GcbSTj2Fen1X1LT4tX027sLhd0F1C8Ei+qupUj8jXbgsTLB4m
nXj9lp/jqjyc2wMMzwFbBzXxxa9G1o/k9Ty79mPWDqXwwjtWYFtPupYAO4Vj5gz+LtXrNfNX7K2q
tpHibxF4cuXEcrqJFjbGTJExVx+R6e1fStetxFh/q+Z1UtpPmX/b2v53Pm+CMZ9cyDDOXxQXI/Lk
dvysVrvTbS+kt5bm1huJLV/NheSMOYmx95eOD9Kq+HfEmn+KtPN9pk/2i2EjRFtpUhlPPB/P8a1K
5zS/DGn+EtU1zWEu2tbe/YT3EMjqtvGw+8/PQkk5Oe9eJDklCSk3zK3L231X6/8ADn2cueM04pW6
/o/0OiooVgyggggjIIOQaK5zcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzX46eH/C
mpeHLXUPGWvajoWjWEpDtYztGk3mbQEkAVtwyoxxx6jNeTfDfw34D8QfE7Rv+EH8F3N94X+zTpqd
7rVk81tuC5ikhebcQ+eCFOCGHy8ZH0D8RJtUtvBOsXGiadDq2sQwGWztLiISK8qkFflyMkdRyOQK
8Y1z4T+O/iD9gTW/iRDJrVnNBfjS7SNLaWyDfK0gMeHV1R2APQk9e9C3B7H0QqhFCgBVUYCgYA9q
yfGHh2Lxd4T1jRJiqx6haS2xZhkDcpAOPY4qfw/pB0DR7TTjqF9qv2dPLF3qUiyXEgHQuwUbjjjJ
GTjkk81og7SD6HNAGV4T0e58PeFdG0u8uftt1ZWUNtLdbComdECl8EnGSM/jWpXlnwNs7vRb34g6
Nc29wkdr4immt55gxEsUqqy4ZvvEBRnk46V6nQAUUUUAFFFFABRRRQB81/Gjw7qfwx+JFr8QNEtl
azllEk4VPkWYja4cDoJATz6knrXuPgHx5pnxD8Pw6pp0gBwFuLZjl4JMcq39D3FbOqaVZ65ptxYa
hbR3dlcJslhlGVYf49wRyCMivl/VLLV/2afiFDd2kkt54Zv2P7rPEsQPMbZ48xM5B7/QkV9tQ9nn
2FjhZaYimrRf88V9l+a6f8Ofk+M9twbmE8wprmwNeV6i605vTnX919fu7H1VVDXtDtPEmj3WmXye
Za3KbGx1U9Qw9CDgj3FO0PWrPxHpFpqenzC4srpBJFIO49COxByCOxFXa+N9+jPtKL+aaP1OMqde
mpRalGS9U0/0Zz3gfQbzwn4bg0zUNQjvvIcpFKF2AIW+Ree/P649K6Kue8d+Ek8beG7jTGma3kYi
SKQE4Dr03AdRyePx6irPhK31i18P2kOuzw3Opou2SWHOGHbJ7nHU966KtqsXXlNczeqtb5rp3uZU
705Kio+6lo9/ka9FFFcZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAo5OK+etZ+JnhDQ/jf
feINMk1rWNZXTzo13o+l6U0vmyJJksWzncNqjhTwnvX0JXgPxWvm0jxPqEGufGGTwrpkrCeDR9Hs
VjugjAcvKg3kklsHOOPUGl1H0PRPAXj7xD4y1SVb/wADaj4Y0gQGSG81SZFllcMAE8kfOvBJyQOl
d1Xj/wAF9P8AB/iiGw1vRb/W9ZufD7XNjFqWrO4aYTnzHJz/AKwAswGfu8j0r2CqJONv/HlzY/Fr
SfCUlmgstQ0ya8ivNzbzKjYMeMYwFGepPzDpXZVy3i7TfDlrrmgeKNcuBZ3WlyNa2UzSFUaS5KRh
CAPmJIUAepNdV04PWkMSiiigAooooAKKKKACsPxt4N0/x54cutH1Ff3Mw3RyqMtDIPuuvuP1BI71
uUVpTqTozVSm7SWqZhXoUsVSlQrR5oSVmns0z5h+FXi69+Cnji88GeJmMemzzAJOciOJzwsq5/5Z
uMZ9Mexr6f6cHrXkn7R3w+i8VeC5tXgizqukIZlZRzJAOZEP0GWH+6R3qb9nHxmfFXw/jtLiVpb7
Sn+zOXOSY+sZ/L5f+A19bmcYZnhFm1JWmny1F59JfP8ArqfmvD9StkGZy4bxD5qTTnRk9+W+sH3c
dbeS7NW6/wCJHjRPh34H1fxFJbNefYYwy26tt3uzqignsNzDJ9M1wHg/4jfEO+1DQLvUNF0XXPDm
sOEa68NyPI+n7sYaYliCBnnHTa3pg978TrzUNP8AAmsT6ZoMXie5EOG0mYFluIycOu0A7ztJO3qc
YHNfMuh2/hi48eeFLn4Swa5Ya8b+JtX09hJ9mtLfP71ZWbkDqOSQee+KyyvC0sRhajnDW7956pLl
62acNdVKzT26HoZ9jsRhMfSVOq1Gy9xOzb5tXG8WqmmjhdNLXrdfRmnfEGODUvF51vUdFtdK0WaJ
BNb3LNJCr5H+kAjCknAGPWtDRPiZ4V8SeILnRNL16yv9Ut13vbwuTx32tja2O+0nHfFfP3i/TLyT
R/2gQlldN593YmELA580CQZK8fNj2rsH0P7D8XPgm9tp7Qww6NcxSvHCVVP9EbCsccck8HuTTqZb
huRy5mnZ2ta3u0oz19W2v6sFHO8b7SMFFOPMk73vaVeVLTZKySez0063Xq//AAn/AIb/ALBn1v8A
tyy/siCXyJb3zf3SSbgu0n1yQPxqLxZ8SPDHgWztrnXdatdOiuRmAOSzyjj5lRQWI5HIGBmvmHVp
77S/gZ4q8FTaDrX9ux6yZ5FXT5TEkJnVlk8zG0htuBjk5yOMkek33meA/jHa+Ldf0q/v/D9x4ehs
7W9tbN7oWMwKbkZVBKbvm5x/Hjuacsno05O8m9ZWSteSSi1bfV3fR6LRCjxHiaqtGCjpDmbTtByl
NS5ldaR5V1Wr1aPXG8d+HU0fTtVOt2X9m6jKsFpdCUGOaRs4RT/e4PHXg1bXxNpLa5c6MNStv7Ut
YftM9oZAJI4uPnYdhyOfevmDVvB+u2vw6fW00G/ttMbxsmuw6SlufPtrII6mQxDlckj5ccDk8ZNd
Zodz/wAJl8cvG+px6LqzaVqHhjyoVntntZLkfulwm8DBbBxnHr0qKmUUYxlOM7pKXbRpxsn52bv6
di6fEWKlUp0p0knJw76pqd5LyvFW7c1nqeq+HvjB4L8Wa42j6T4jsr3UhnbChYeZjr5bEBX6E/KT
wM9K7Cvlj4eza1Y+KPBemaQmp63aWdwI59K8S+Hgk2hQ/wAbLdlBggDAwecDjtX1PXnZpg6eCqRj
Sd011eu7XZb+luza1PZyLMq2ZUZzrpKUXbRWWyf80r22eqfeMXoFFFFeKfTBRRRQAUUUUAFFFFAB
XnXxPmn0nVtOvdK+HEHjPV542i+3OIl+yqhyqu7jgZdyOR3r0WvKf2jLWa68KaMJ4r+48NjVYf7d
g03PmvaFWGCByU3lNwHbHYGkMT4N6H4kPiTxT4m1yHTNJh1fyFXR9KuROkcka4MjlflDkYBwTnv0
Fer181fA/wAIvoPxKtrfQ9DvNLt9Jjv7LXtRkDJbah+9ItQgPDOBg5Hv+P0rVdEI4j40+Dr7x38O
dT0nShH/AGsWins2lcKqyxyKykkg4xiu0hMphjMwUTbRvCHI3Y5wfTNPK+YCu4puGNy9RnjIrzj4
CeKdR8SeB7i31q4kvNb0fUrrTL24kABkZJCyNx/sOg+qmkB6PRRRQAUUUUAFFFFABRRRQBT1u2F5
ouo27MVWW2ljLL1GUIzXz7+yDctu8UW+BtC28me+TvH9K+jJoRcQyRE7RIpTI7ZGK+aP2Q7jbq/i
SHH37aB930Zh/wCzfpX12W+9k+Pj29m//Jj8zz33OKMnn39sv/JF/mfTNLuZuCSfxpKVfvD618if
phn6L4i07xHBPNpd/FfRW8720jwsSEkQ4ZD7g1obj6n86+S9N+IGseD/AAk2maI9zb3Wt+M9Rgku
rK1FzcRxq67hDGeGc7hjPofXI6n/AIWR460X4dePpbqPW4G0uGCfSdZ1vSltZ3DyKsiOmCjFex64
PPavqK2RVYyvTkrN2V3ruo32tu/W2tj4ahxVQkuSrCXNFNuy0Vk5W1d9Yrfa7SufRe4+p/OjJHIJ
BrwvR/E3jDRPib8PbfVPEf8Aa9h4rsJZ7iyNpHFHbusHmDy9oz1I6nnn1GMdfGHjnxL4L8ceOrLx
WNJj0m4u7e00dbOJ4RHEByxYbt5zkHPXHY4rl/sepdfvI2dtdbXcnFLa+6fSx2/6xUeV2oz5k3eP
u3soRm38Vrcsl1vd2sfQ8l3DDcQQPPHHPOWEMbOA8hAy20dTgcnFU9F8Sab4kiupNMv4r+O1uHtZ
mhbcI5VxuQ+4yPzr5x0Rtf8AE3xx+GmpXHiGRby+8OreGQWkXyJhzJEBjGHIb5uo3cdBWdo9x4o0
D4ffEnxPofiRtKg0nxJdzJp8drG63D74g/mOwJxtIAAx0Oc547P7DSSi6q5mo97XcnG23lv69DzY
8USlJzjh3yJy6xu1GEZ3+JLrqvS2t7fWG4nqSfxpKp6LevqWi6feSALJcW0czBegLIGOPzq5Xy8k
4tpn3cJKcVNbMKKKKksKKKKACiiigAooooAKbJMlvG8sjrFGilmdm2hQBkknsMU6goJPkYAq3ykH
oQeKAPMdc/aW+HejSNEPEUerTj7sWlRtchs5+66jYen96t74dfEy2+JUN/PZ6Nq+mWtsYxHPqlqY
VuQwY5jPIbG3nB43D1FeGpq2v2+sve6DfeHfh94cbWLzRofJ0uFnilgjdla5cgEFzGBjOcMD6V7x
8LPF1148+Huha9exLDd3kG6VY8hCysyFlz/C23cPZhQtrh1sdVXJaD4p0n/hPPEHhK00v+zb2zii
1KWRI40S88770oC8khvlJbkkHtgnra5e88GWf/CxbHxgb97W7j099Ja3+UR3CNJvQEnklWLEAetA
HUUUUUAFFFFABRRRQAUUUUAc98RPEI8K+Bdd1XzPLkt7R/KYHB8xhtj/APHmWvJP2S/Dn2XQdZ1t
1Ia6mW1iJx91Bkn82/Srf7WGvmx8IaXpKPtN9cmWRQeqRjofbcwP/ARXoHwe8PHwx8NdBsnXbO1u
LiUYIIeT5yD7gMB+FfXx/wBjyFv7Vef/AJLH/g/mfmMn/afGUYfZwlJv/t+p/wDav8DsaUcc0lcb
4y8Tajpvi3wrpOmvGPt9wxulkj3fuQRnB7HAfmvl6NGVefJHs39yufpFWrGjHml5L73Yz5PgT4Xm
0CbSn+3bW1STWIrtLnZcW1y5yWjdQNo9ueg7ili+B3huPw14g0eSTULpteKtqOo3N15l3PtIK5kI
6DHAx3Neg0V0f2hitvaPe+/Xf80n6nn/ANk4C/N7GN7W26NNfk2vRtHLTfDfSLjXfCmrO1yLrw3A
1vZYkG0q0YjO8Y+Y4HbFeJeMPhT4jv28V2Nj4Mv4l1aaRkbTvEccWlSux+W4lt3YPuHDFQCCR0r6
WorowuaV8LLmXvet9Nebo11bZy47I8JjocjXL1dlHX3VH7UZfZSWltjznTfgvpyw+Dby6u72313w
7Yx2i3WnXBiEigfMjccqSWHbIY1eX4O6CvhHxJ4cD3g0/X7uW9uz5o8wSSFC2w7eB8g4IPeu4orn
lj8TJ3c3vf8AG/56nVTyrBU1aNJbW9fd5dfWKSfcgsLOPTbC2tIdxit4khTccnaqgDJ9cCp6KK4W
23dnqxiopRWyCiiikMKKKKACiiigAooooAKKKKAPBvidpOn/APCX6tZWPwgvvFNzqBtru7vlcw2c
8iBjGxboWG+QMMj3zmu7+EfjLUvEljq+na3pFp4d1bRrlLY6RasSYLcxKYmI6YOHwVypC8cgiq3x
euNZjt1n03x7YeC9MsIGm1R5rdZ5grMoiZRnK5w4x/ESMc1x37P3iXwXceJtajsfF2peJ/Fmqojz
XWrWz25njiBwIVIAwNxOCd2MdgcEewM94rzf45eHb3VNJ8OatpVhNqGraHrlrexRW6bpDGW8ubA/
65ux6gcCvSKzPFF1fWPhrVrnTAjajDaSy26yIWUyKpIBA69KANRvvGkrl/hd4qfxx8O/D2uzFTc3
lmjT7QAPOHyyYA6Dercdq6igAooooAKKKKACiiuG+M3jwfD/AMC3l3DKE1O5H2ayGfmEjDlwP9kZ
b0zgd66MPh54qtChSV5SdkcOOxtHLsLUxeIdoQTb+X6vZeZ4r8Rrh/jD8drDw/Zp5thp8gtZGHTY
jbrhz6YwVHqQPWvqQ9TXhf7LfgU6ToF14mukxc6l+6t93UQqeW/4Ew/8dFe519Dn9amqsMDQ1hQX
L6v7T+/8j4rgzC1pYarm+LVquLlztdo/YX3a+jQVjaT4ostd1jVtOtkmaXSpVjlkdB5ZcqeEbJyR
yDwK2GYKMsQoyBk+5wP1rJ8PeFbHwudQNn5pa+uGuZmmfed568+n+NfOw9nyT5/i6ffr+B99Ln5o
8u3X9PxNeiiisDUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5e+MfhnUdN8aeMGbwv
rOvLrk+n6jpt3p9qbqHfbg7redQfuk5GBzjBFbmoeLPFuo+MPA2t+JvCuj+BdB0u72RNqmop5zGS
NoyE24KgL0RlAyASeBXtnjSxvtU8H63Z6Zf/ANmahPZypBeFiohfacMSASAPUDNfKepWfwStdFiT
UNe1jxDrqCI3NzYvPdqXUgyKpkVUKMQVyexHQ0LTQb1PsC1uoL62iuLaaO5t5VDxzQuHR1PQgjgi
pgdpBFcB8H/Ettrmk3VtpvgrUvBui2Zj+xx6hbiATq+4lkQZAAwDwSPmrvqBHI/D3UfDEKat4Z8M
2/2KHw9dG1uLXYUCSPmQsuTkgsW+boSDiuurifDvgW90P4peLPEa3MP9k63b23+jLu8wXEa7WY8b
cYHqSSx6V21ABRRRQAUUUtACEgAknAHJJr5Y8dXzfHb41WOg6fKz6LZsYPtEJyPLX5p5QenONqno
cL64roPjj8V7vxFqR8CeEc3stw3kXc1qdzSPnmFT0wMfMfqMgA16J8G/hLbfDPRN8oWbXbpB9rnB
yq9xGn+yPXuefQD7fB01kWGePr/xppqnHqk/tv8AT/g6fkuaVpcX49ZPhNcLSknWn0k1/wAu49/P
/ga97Y2NvptnBZ2kK29rbxrFFEg4RQMAD8KmoqlrWoS6VpN5eQWcuoTQRNIlrCRvkI7DP/1z6Ani
vi1zVJW6s/V/dpw0Vkvy9DnviR4W1HxlYadplrNHDp73avqDM5VzEvOFGOT1P1ArrY0WONUUEKoC
jJJOAMdT1rmvh3Nr114cS68QuPtdzI00cPlhWijY5VT/AEB5AwDXTV015ThbDtpqDe3d7+phRjGX
79JpyS3/AACiiiuM6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADg8Hp3rxPXJ/H9zc
6xoXhf4Z6Hpels8tkNR1CdBHNHkr5uxQp2kYOMN+Ne2UUAYHw/8ADt34S8D6Fot9e/2leWFnHby3
XOJGUYOM84HQZ5wBW/RRT3A81+Jl1f6H8QvhvqttJcNZSX82mXdvGXKMs0fyuyjglWQcnpk16XXN
/EfxhN4A8Dax4ihsG1RtOh89rRJPLLqCA2Dg9Ac9O1btndxahZ291byLLBPGssciHKsrAEEHuCDS
AmooooAK8M+PnxmfSN3hXw3Oz6zM3lXU0Ay0IPAjQj/loc9un1Nbfx7+Ln/CA6OumaZMBr98nyMp
GbaPoZMY6nkD8T2rK+AvwZbQUTxT4ijM2t3Q823hnGWtg3Jds/8ALRs/UA+pOPrstwlHBUFmmPV1
9iH8z7v+6v66J/mee5li82xb4eyeVpW/e1OlOL6L++/66uOt8DfgzH8PdPGp6rFHJ4iuF5wdwtEI
/wBWp6Fv7xH0GQMn1eikZgiszHCqMk4zwK+exmMrY+vLEV3eT/qy8j7fK8swuT4SGCwkbQj97fVt
9W+v+Q2aZbeGSVgzLGpchFLMQBngDkn2Fcj8O/FmreMv7R1K5sksdGaXbp6uCJmA4Yt2x0/HI5xm
j4f+NtQ8bT6ldnS/sWio4SzmkyJZCMhtw6Z+nTpzXYgBeAAB7CnUj9VU6NSC59Nb7dX8+j7ao6YS
+sOFWnL3ddLb9Pu/MWkoorhOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK
KACiiigCprGkwa9pF9pl0Ga2vYHt5QpwdrqVOPfmsvwGuiWvhPTbDw7fx6jpOmxLYQzJOJsCIBNp
cdSMAfhXQcjkda89+Evg/VfBepeN7Ce1EWi3GtSahpciurAxzIGdAo5UKwxggc5xnrQB6DXNfETx
1ZfDvwvc6teEPIo2W1vnBnlI+VR7dyewBqXxp480T4f6abzWbxYN3+rt1G6aU+ir3+vQdzXznANX
/aa+Ikcksclh4bsOGCnIgjz03dDI+Pw+gr6TKsr+st4rFe7QhrJ97dF3b20/Ox8JxHxD9QSy/L7T
xlXSEVry3+1Lsktdd/S7Nf4IeBb34leKrrx74nBuYVn326vws0wPUL/cTgAdMgDnBr6Vqvpum2uj
6fbWNlCtvZ20axRRJ0VQMAVYrizTMJZlX9pa0VpFdktl/mepw9klPIsGqF+apJ805dZSe7/y8vO4
tcd4V+IQ8XeKNSstPsnk0izTb/aRyA0wOCoHp6d+D7Vcg8cW9345m8NW1tJcS28Hm3F1Gw2QtxhC
PXBHIPU4x1roYbeK3DiKJIg7mRtigbmPUnHU1ycqoRaqw1kk1rtfrb8j3eZ1pJ0p6Rbvpv5f5jlU
KMKoUZJwox1OT+tLRRXGdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF
FFLQAlFZWs+LNE8Oqx1PVrKxK9VmnVW/LOa898QftM+C9G3JazXWsyg4xZw4T/vpyox9M16GHy/F
4v8AgUpS9Fp9+x4mOzvLMtTeLxEIW6OSv92/4Hq9fiL/AMFP/wBoTx1q37U3iLwtbeI77TvDXhxb
a306z027eKJt0CSvM2xsM5eRhu6gKq/w1+i+r/Gbx98V5JNO8J6VNp9lICjmzBeVh3DTEAJ/wHaf
c1Sf/gnP8LviAbXV/iXoza9r4Xa4tLyW2jVMcIzRMrSEc85A7D1PpYzJnl9D2mKqpVOkFq/Nu235
fM8LK+KVnWN9jl9CUqCTvVa5Y36KKerv16+VjxD/AIJuaB4g/aY+FV14l+IWuX+qw6Rqr6XDcXDs
9zexrFHJteZjnC+ZtyMkjjIwDX6J6To9joOnxWOm2kNjaRjCQwIFUf4n3NUPBfgnQPhz4XsPDnhf
SLTQtCsEKW1hYxiOKMElicDqSSSSeSSSSSa2683E4/E4qEKVWbcYKyXT/h/Pc97A5PgMvrVcRh6S
jUqNuT6tvz6LyVl5BWHrvjbRvDmo2NhfXYS8vJVijhjUuw3HAZgOi54zVC8+JGmQ+LrXw7bRz6jf
SPtuDapuW193P1xnHTNacfg/SI/EkuvCyRtVkRUM7EnbgYyo6A44z14qI0o0WniYtJq6t17b7L5H
fKq6iaw7Tadn5d/Vlyz0ax026vLm1tIbe4vH33EkaANK3qx7nmrlFFckpOTvJ3OpJRVkgoooqRhR
RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWB4u8eaD4Es1uNb1CO0D/AHIsFpX5
x8qDkj36Vx/x4+LEvw10K3h01ozrl+xEPmLuEMY+9IV7nOAAeCSTzgivOfAn7Puq+NbtPEXji/mM
dziYWwk3XE4IyN7fwLyOBz2+WvpsDlVF4dY7MKnJSeyXxSt2/wA/+HPgM24ixUcY8pyWh7XEJJyb
0hTvtzPvbW2nld6HVap+1d4WtNws9P1K/I6MUSJT+JbP6dq4XVvir48+NV42leFLCbTNOZdsq20n
JB6mSfA2j/ZGPxr3nRPhN4N8O4Nj4b09XU5WWeLz5B16PJuYdexrqooUgXbGixr/AHUUAfpXTHMs
rwb58HhXKS2c3e3nyrQ4amQ8Q5pD2WaZgoU38UaUbXXbnfvW+WvVHztoP7JLSSJLr/iBiDy8OnxZ
Y8f89H9/9g16TofwC8DaFsZdES/lX/lpqDtPnjGSp+X/AMdr0KivOxOfZliv4lZpdl7q/C34nt4D
g/Ist1o4WLfeXvP/AMmvb5WI7W1gsbdYLaGO3gUYWOFAij6AcVJRRXhNtu7PsUlFWWwyaTyYZJNj
SbFLbEGWbAzge9ch4N8U+IvFGqXE13oI0jQ1QrEbhj9oeTPXHHGO2OPU12VLW0KkYwlFwTb666eh
lOEpSi1KyXTuVbfTbSzurm5gtYYbm6IaeZEAeQgYG49TwKs0UVi25as1SS0QUUUUhhRRRQAUUUUA
FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSrywFAHzD8R4Y/G37TGmaTKgltrd7a2kXsyq
PNcf+PMPwr6d+gwPavl/4R58UftG6zqg+7C95d4b0LeWv/owV9QV9fxF+5eGwn8lOP3vf9D8x4H/
ANpjj8xa1rVp2/wq1vuuwooor5A/TgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii
gAooooAKKKKACiiigAooooAKKKKACs3xNrEXh/w7qepTtsitLaSZmxnopP8AOtKvO/2gv+SR69/u
xf8Ao5K7cFRWIxVKjLaUkvvdjys2xUsDl+IxUFdwhKS9VFs88/ZH0t5I/E+syp/rXhto356jc8gx
0/ijr6Hrxz9lX/km1z/2EZf/AECOvY69biKo6uaV2+jt9ySPm+CKEaHD2EjHrFyfrJt/qFFFFfOH
3IUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q==</Data></Enclosure></Binary></metadata>