-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGNAT.CalculateThreadednessTool.pyt.xml
165 lines (165 loc) · 18.3 KB
/
GNAT.CalculateThreadednessTool.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
<?xml version="1.0"?>
<metadata xml:lang="en"><Esri><CreaDate>20170721</CreaDate><CreaTime>08072700</CreaTime><ArcGISFormat>1.0</ArcGISFormat><SyncOnce>TRUE</SyncOnce><ModDate>20171019</ModDate><ModTime>211228</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>ItemDescription</ArcGISProfile></Esri><dataIdInfo><idCitation><resTitle>Calculate Threadedness</resTitle></idCitation><idAbs><DIV STYLE="text-align:Left;"><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Calculate Threadedness </SPAN><SPAN>tool plots intersection nodes within a stream network, determines the node type, and calculates the number of nodes per stream reach feature. Three node types are plotted, including:</SPAN></P><UL><LI><P><SPAN>braid-to-braid</SPAN></P></LI><LI><P><SPAN>braid-to-mainstem</SPAN></P></LI><LI><P><SPAN>tributary confluences</SPAN></P></LI></UL></DIV></DIV></idAbs><idCredit>Jesse Langdon, South Fork Research, Inc.</idCredit><searchKeys><keyword>stream</keyword><keyword>network</keyword><keyword>braid</keyword><keyword>threads</keyword></searchKeys></dataIdInfo><distInfo><distributor><distorFormat><formatName>ArcToolbox Tool</formatName></distorFormat></distributor></distInfo><tool name="CalculateThreadednessTool" displayname="Calculate Threadedness" toolboxalias="GNAT" xmlns=""><parameters><param name="InputSegmentNetwork" displayname="Input segmented stream network feature class" type="Required" direction="Input" datatype="Shapefile" expression="InputSegmentNetwork"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Input segmented stream network polyline feature class. All braid features have been manually removed.</SPAN></P></DIV></DIV></dialogReference></param><param name="InputFullNetwork" displayname="Input multi-threaded stream network feature class" type="Required" direction="Input" datatype="Shapefile" expression="InputFullNetwork"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Input stream network polyline feature. This stream network should be the same spatial extent as the segmented stream network input. Braid features should be included.</SPAN></P></DIV></DIV></dialogReference></param><param name="OutputNodes" displayname="Output node feature class" type="Required" direction="Output" datatype="Shapefile" expression="OutputNodes"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Point feature class which represents nodes in the stream network polyline feature class.</SPAN></P></DIV></DIV></dialogReference></param><param name="scratchWorkspace" displayname="Scratch workspace" type="Required" direction="Input" datatype="Workspace" expression="scratchWorkspace"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>File geodatabase or workspace that stores intermediate data.</SPAN></P></DIV></DIV></dialogReference></param><param name="RiverscapesBool" displayname="Is this a Riverscapes Project?" type="Optional" direction="Input" datatype="Boolean" expression="{RiverscapesBool}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Indicates if this process is part of an existing Riverscapes project.</SPAN></P></DIV></DIV></dialogReference></param><param name="projectXML" displayname="GNAT Project XML" type="Optional" direction="Input" datatype="File" expression="{projectXML}"><dialogReference><DIV STYLE="text-align:Left;"><P><SPAN>XML file which stores information on the associated Riverscapes project.</SPAN></P></DIV></dialogReference></param><param name="realization" displayname="Realization Name" type="Optional" direction="Input" datatype="String" expression="{realization}"><dialogReference><DIV STYLE="text-align:Left;"><P><SPAN>Please select an existing realization name from the Riverscapes project.</SPAN></P></DIV></dialogReference></param><param name="analysisName" displayname="Segmentation Name" type="Optional" direction="Input" datatype="String" expression="{analysisName}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Select a Riverscape analysis associated with this realization.</SPAN></P></DIV></DIV></dialogReference></param><param name="attributeAnalysisName" displayname="Attribute Analysis Name" type="Optional" direction="Input" datatype="String" expression="{attributeAnalysisName}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Name for the attribute analysis which will be generated by </SPAN><SPAN STYLE="font-weight:bold;">Calculate Threadedness </SPAN><SPAN>tool.</SPAN></P></DIV></DIV></dialogReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Calculate Threadedness </SPAN><SPAN>tool plots intersection nodes within a stream network, determines the node type, and calculates the number of nodes per stream reach feature. Three node types are plotted, including:</SPAN></P><UL><LI><P><SPAN>braid-to-braid</SPAN></P></LI><LI><P><SPAN>braid-to-mainstem</SPAN></P></LI><LI><P><SPAN>tributary confluences</SPAN></P></LI></UL></DIV></DIV></summary></tool><mdHrLv><ScopeCd value="005"></ScopeCd></mdHrLv><Binary><Enclosure rel="side-panel-help"><Data EsriPropertyType="Image" OriginalFileName="thumbnail.jpg">/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK
CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFbASwDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9RaKK
KACiiigAooooAKKKKACq+pX0el6fc3kv+rgjaRvcAZxViuL+Ll5JD4RNnAcT6jcR2af8COT+i4/G
gBPhLaz/APCMPqN0zPc6lcSXTs3ucD8OCfxrtar6dYxaXp9tZwjENvEsSfRQAP5VYoAKKKKACiii
gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA
CiiigArgfGZOs/EDwtpK8rAzXso7YHTP/fJ/Ou+rgfBbf27498T62fmihK6fbt/sr97H1Kg/jQB3
1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU
UUUAFFFFABRRRQAUVzXi74meFPActvF4h8QWGkS3AzFHdTBWYdMgdce/SvO/F37XHgLwnryaZ5t5
rHCtJeaZGksEe4Aj5i43cEE7Qfz4rnxeIpYClGtipckZOyb2b8h4lPB0Y4nEJxhLRSaaT9H1+R6z
4i1RdE0HUL9jgW8DSD6gcD8TgfjWF8K9JbS/BVi0g/f3ebuT/gfI/wDHdtc02sT/ABoFpHpcUkPh
Eusst9JlTdKOQFHp/LqcEYr1CGJLeJIo1CRooVVHQAdBW6akrrYlNSV0OooopjCiiigAooooAKKK
KACua+J0bzfDfxWkau0jaVdKqx53EmFsAY5z9K6WloA+Oz4q8ZfDnVLjQ9Y8RX3hrT7CDS9Nk8cT
WiXW6xEGpz2spEquhmaRLa1lJUl3J27WmjK52t/F7x9Nren6zeatJoviGPSZotX0NraOOHwtHNNp
YacytE4UlGmYPciVBtZguyKQH7TkmW3jeSSQRxoCzOzYCgckk9hXEeGfjn4E8Y+IG0PRfFNlf6op
IFvGzDfjOdjEBX4B+6TW0KNSopShFtLey29Tro4PEYiE6lGnKUYK8mk2ku7a2XqebeNNPPxP/Z18
Oal4gtrfXtUN/pbLdQxNiRG1K3jeRfkTh4c7iqqpDMVG0iuW8b/FbxL4K17/AIRObxJF4C0HSde/
seTXYdMhlT7HPY3t7aGJZEZQY44beAkg/MrsRgivqvJznPNcvdaN4Q8N31td3cOlaZdz6o+owTXD
pE8t88LQtKpYgtIYpGTjna2OlYPyOU+Zrz46fEuTVNRj1LWLPwldjSraW60q4iXOmo1raSyXYJtZ
TBiaaeHzrlngG37mYn3fSXwj8Q3Xir4b6Dqt7cTXlzcQHfdTxxo0+12US/uv3bBgoYOmFcEMoUMF
HR2eu6fqF7dWVpqNrc3lmQLi3hnV5ICc4DqDlc89cU3Vdc03Q0ik1PUbTT0mcRRtdzrEHc9FUsRk
+w5piLtFDEICWO0DqTxiokuoJGiVJo3aVDJGFcEugxlh6j5l5H94etAEtFAIbkHI9qpWOuabqlzd
W9lqFpeXFo2y4ht50keFjnAcA5U8Hg+hoAu0U1po1lSJnUSuCUQsNzAYyQO+Mj8xSQzR3EYkikWW
M5AZGBBwcHke4P5UAPooooAKKKKACiiigAooooAKKKKACuU8eeKrjRYbbTtKUTa5qDeXbpjIQd3I
9B/9fsa6HVNRi0jTbq+nOIbeJpX+gGcD3rj/AId6TcapNN4t1QBr/UB/oydRBB2A9Mj9PqaAPi/9
q74S+OrX4jPrF5FeeJLO+jhSC+trcsqsFwYtq52kEEjpnOfWoW/ZX+IWn+FrLV7rTbeGBoBJNE1w
olthnA8xDznGD8ucA84r7V+LHzx+GYpOLZ9YhEh7d8A/XJ/Ku4uIUuoZIZVDxSKUdWHDKRgg/hV5
8qXEOAoYDFwsqTumnZ7W9NVv+h9RxFnsuJcmwmTYukksPa0ldN2XL6arfu1fQ5X4S6Bb+F/ht4d0
u2uftkVvZoPPxjex+ZjjtyTxXW1wPwyll0e+1rwvMxkXTZt9uxOT5T8gfqD/AMCNd9WFOnGlBU4K
ySsvkfKQhGnFQjstAooorQsKKKKACiiigAooooAKKKKAOU+K/hq+8ZfDXxLommSiHUL6xkhgZm2g
sRwpPYHpn3r4O+Cv7PfxCX4u+H2udA1DRYNL1CG6ub65jMcaJG4ZtrHhyQMALnOfSv0ZuLiK0t5Z
55UhgiUvJJIwVUUDJJJ4AA71554V/aE8B+NPEg0LStbEt+5KwrJC8aTkckIzAZOAeOM9q9XCcQrK
acsI3FOrtd63207n2+ScbYjhvB18vpKDVfbm3Tatprrp0fU9Hrxn9oPwnrviSawfRrS8uVbRNX05
/sUEMreZcfZfKRhKwCq3lPlwcrjqM17LWTr/AIw0Hwo1muua5pujG8k8m2Go3kdv578fKm9huPI4
GTyK8o+IPHfhj4L8U6X8WV1LUbCeG0hOtrM8iRLbot1dW80flSKfMlLGHowwoBzg7QdX4seG9Y1z
QvDQ0611lxGLyG5zBb3d2qy20kY3rI2w5LAZyQOM8Zr1NfEWkyNhdUsWP2o2OBcof9JAJMPX/WAA
nZ97jpRr3iPSfCumSajreqWWjadGVV7zULlIIVJOAC7kAEngc0dLD63PnO48L/F7T/CuhR2r6qus
fbJnuoYr1Z7eKFL1VjhUNKo8v7IG+ZvM3c/LvKsu38PvB3xDg+JumalqhuLZ7LQrmyF5fiO4sEWR
9LZYooY5UcSEW9yGY8b1z8y7RXvdneW+pWcN1aTxXVrMgkingcOkikZDKw4II7iol1iwYRlb62Il
uGtY8TL88y7t0Q55cbHyvUbG44NPrcnoeA/CHwb8R/CttoukedqNgbISQvNq0q3uni1ELADyxKsj
ym4+YNuB2H723C1Rt/AXj7+2Ivsi6jZsl+Ybq7gWG0C2s2t2s0/kOrl2D2yTk55UcAhiM/SyyLJu
2srbTtbac4PoazrnxRo1m18txq9hA1i0SXYluo1Ns0uPKEmT8hfI27sbsjGaQz510/Q/i/L4gurm
6GrjThbbirTRfaI2a4i+0RwSGVvnMKMqMoiTdgqi/ePsXwP0HUPDHwu0bTdVt7i1v4muXkhvJEeZ
d9zK6+YyEqWKspJXjJOK7aS6hiuYrd5o0uJQzRws4DuFxuKjqQNwzjpketPkkWJdzsqLkDLHAyTg
D86AFooooAKKKKACiiigAooooAKKKKAOO+LlvcXHgO+EGSqNG8yqOWjDDP5HB+gNdF4fura80Owm
siptWgTy9vQDGMfh0/Cr0kayxsjqGRhhlPQg9q878Mu3w/8AFk3hydj/AGTfsZ9OkborHrGfT/6w
/vUAdD8QvDz+JPC9zbwbvtcJFxb7Tz5i8jHuRkfjU/gjxIPFXhqzvyR5xXZMB2kXhvz6/jW7Xzf8
UPjVafs++P7uxsbP+101KFbyawEvlLbOxODu2nk4JwB0Iz0FcWLxlDAUnWxMuWP9djnr4ilhoOpV
dkepaG4vPi94gmt+YYbSOGZh0MgC/wAsEfhXfV5R+zf4osPG3gi71y3YnULq+k+3Rt96KQYITPcb
WDA/7R9K9XrejWp4inGrSd4y1TNKdSFaCqU3dMKKKK2NAooooAKKKKACiiigAooooA5z4keGZ/Gn
gPXtDtZ1trm/tJII5WJChiOM47Z4P1r4y+FP7Nfj6P4naPJqWjz6NZ6XfRXVxfSuuzbG4bEZBO8n
bgbcgZya+59S1K10fT7m/vp0tbO2jaaaaQ4VEUZLE+gArx3wP+198PPH/jKPw3p9xqFtdzyeVaXF
9bCOC6fsqHcWBPYOq56deK8+vwnPPqix8Kc5Kjq+Xa2+un5dLnzuZUsDUr0vrVTll0V0rntlePfH
7wH4m8ZSWDeHTeqDo+q6XcGwmtIy32n7NsSX7SjDyW8lt5jAkGF2kc17BWJ4o8baL4Lht5davhYx
3EiwxM0bsGdmVVX5QeSzKAO5IAr0D6I8M8P/AAO8W2fj2K9vIbEaNF4ik8S7Yp+TeSTmMuF6gLah
+pyTcY/gr0f4m+Gdb1rw6iaHDqFpf2+uQXwks7q3a4Man5pIftIaJTg/ccY68ZIrrNP8baDquvXG
i2mqW8+qwB2e1Vvm+QqsmOxKF0DAZ2lgDjNL4n8aaN4NFodZvRYi7l8mDdG7eY/90bQeT6d6OwHz
3cfCP4mWXhKa2sf3mossENusmrSKsKLBc/O0cUsKF/NkgLlSF3DeqOEVK0dN+FPxEbxZot7fMsr2
evXWpQX1xftNb2kLnUQoe2V080sLm3OARgKfmUqAffm16wXVrfS2uVXULiLz4rdgQzpzlhx7H6VZ
ub63s5rSGeZIZbuUwW6O2DLIEaQqo7nYjtgdlJ7UdbgeDw/C/wAd6f44vL21kVLe51aG9W7t754b
eN/Mga7me28wmRZokeFY2ZjGVODhy4xPG3wD8Z+IvEfiu8c6beJrt1DPevDm3jvPstnaCyPlM7lB
HcrcuAXJBCnJyK+mtp54P5VieJPGuheEGgXWtUt9OM4Zk89sfKpUO5/uou5cscAbhkjNAHgln8L/
AIo33iS+mv5DZ6VPAUEVtq0u8SG4jMjb2mdiWjUjevl5AA8tDxUP/Cn/AIjTa7Cmol9W0GCSNvIu
NWcyeXDqEcsCIfNAZvJiH+sTIOT5uWZK+ndjf3T+VZGj+LNI8QalqNhp2oQ3l5pz+XdwxHJibc6Y
P/Ao5F47ow6g0AfOei/B34t3GhwQa/rs019FKjvLp+qT24lmH2YS3APnMcSbZyEBVR2jQsRX0F4D
0u/0TwrZWGpO0l1B5ibnlMrbPMbYC5JJwm0c810O1v7p/Kk2k9j+VACUUUUAFFFFABRRRQAUUUUA
FYvi3wra+LtL+yzs0MsbeZBcR/fifsR/hW1RQB53D4u17wQyQeKbQXenZCDV7TkL2BcY/Xj8a8R+
LPwnh/aH+Jeo33g/XtJeSztYY7iRrjzInwMA7owxDckYx/D2r2b9pDSNZ1z4N+ILPQo5J71kRmhh
BLyRB1MiqB1O0HjvXyf+yXoevXHxi0y906C4jsLVZPt8wUiMRFGARj0yW24HqM9q+GzzFQrYujlV
eg5wqWd7tWd7XXpu/I+azTERlWp4KpS5oztr8+np1Prr4HfCOD4N+DTpIu/t97cTG5u7kLtVnICh
VHZQABzyeTxnA9Coor7LD0KeFpRo0laMVZHv0aUKFNUqaskFFFFbmwUUUUAFFFFABRRRQAUUVV1X
VLXRdPnvr2UQW0K7nc/oB6knjFAGL8SvB/8Awn/gHX/DguPsjalZyW6zYyEYj5SfbOM+1fFfwn/Y
w8ead8T9Hu9ehttO0jS72K7ku4rlZDN5bh1WMDn5ioGSBgHPXivrYfGSz4nfRtTTTi2BemH5Pr/k
13djfW+p2cN1ayrPbzKHSRehBr6nKuJMfk+GrYXC25am91dp2tdfLvc8DMMkwmZ16deve8Oz362f
/AsWK5zx54dufE2j2VpavGkkOrabfMZSQPLt72GdwMA8lY2A98dOtdEpDNtBBbuK8x0v4/6FdWsF
/f2N/ouj3txbQabql75XkXxnnEEe0pI2xizKxSTa4Q7iPlYL8se+WfAPg7xH4V1n7BcR6O/hy1vN
UvoL9XeS+na7unuFQoYwIdnmyK7B3Mm1DhckDU1Dwlc3+i+GLaC0tNKOm6pb3strDO0saIjMWVHK
KWJ3Z5UdTWhafEbwnqE6QWvijRbmZ4pJ1jh1CF2aOMkSOAG5VCCGPQYOcVEPih4Mazs7seLtBNpe
b/s1wNTg8ufZnfsbdhtu1s4zjac9KAPDtS/Zo1r+0rG5tbHQb0LpxhmW6u5YSl8z3J+3KVibfInn
QsCcHMeQQUSk1r9nvxpq1tZpcDQdQn0i8kexnur2YtOjR6rH5xPk5gkxqEDYUtgxN8xwufZ/EnxY
8OeF5vB/2q886z8VXyafp+oWuJbbzHjZoi0inARyFRWGQXkQfxZqr/wu7wfD4Tl1671i3sYotPut
UayuJkW7NtblxLIIt25gPLbkcdKAPF4/gJ4t8K6dqOqWSadF4jijsbXw19jzPHpbtf3jznasMSJF
5N3Hu2Iq/uyMYAz6v4g+H2taTfWUnhGDS7u3XQf+EdaLXp5ClvErKY5tojfzsDdvjJXzMIN68mu3
t/Fmh3kayQazp88bIJFaO6jYFSzIGBB6bkZc+qkdQawta+MHhDR9BtNWXX9O1G2vZBHZiwvIpmuz
5qxt5QDfPsLjdtztAOaAPH9Y/Zt8Qa5MVnOkrHHcXM80wu5mbVJ2tdQjgvJ1MYCyo91bEDL7PK+V
sRRCqWrfs0+KrHSfEi+HP7BtbzUrq+nWPz5LVH+0DWkDu0cTHcq6nbt0OTCwyMKa+mrW8gvrdZ7W
eO5gbO2WFw6Ng4OCODyCPwqWgFofOMP7Nmuah4l1+fW7jT9R0i+u5rgwy3Lv9rLfbDE8sflKA0In
t41JaRsQ53ARxqM7Xf2c/G2rWMUckuj3d4J5Jr++m1KYTawXWXyDPugdR9lMiCPcrn92GRomCivp
+igCvptvJZ6fawTSm4miiVHlYkl2AALc88nnmrFFFABRRRQAUUUUAFFFFABRRRQBn+Ir46b4f1K6
Bw0NtI6n/aCnH64rC+FNn9h8B6YuMeYGlP8AwJjzSfFe+Fj4D1MltplVYl9SWYcflmt/w/YnS9B0
20I2tBbRxsP9oKM/rmgC/RRRQAUUUUAFFFFABRRRQAUUUUAFVdT0u01mza1vreO6t2IJjkGQSDkG
rVFAEclvFNbNbvGrwMuwxEfKVxjGPSuBTwDr/h24nXwzrqWenysXFrdRiQRk/wB3IP8AnrmvQqKA
Oa8G+DT4Z+13V3eyajqt4wa4uW4Bx0AFeRy/s5axdXlzeSXPh+3vjcWU0lxY2DW41SSC/hujcXUa
4QTbInQFB1mc9DtH0DRQB803/wCyXfxx2iaXrNrbzW+hW2mxXMst75VvcQWD2qSLYrOLWQEtuzNG
5ALDDZG25of7K1xbvDPqWrWt3Mt/bXpFwJ71wI9Us75086d2d9wtCmTgfMDgBdtfRVFO+txW0seW
zfA231Lwr4Y0DUbxJ7DS0vIpxHFtMqzwyRjZz8hUyBgeeVFeTR/sY6i2lrZ3/iKHVrmTSJbObULi
4v41Fy1tdQiVbOO4W3bJudxaRGIHmAZ3Ar9V0UhnzX4m/ZDm8Xaxreo3Gv2+nnWLO/spbW1tS0UM
NzariNcsNwjvDcTjIGRO64GSa1NW/ZlvPF1tr8ms6nYWV5rgnFxFpEMkUdsJH03IgcMHTKabksMH
fMWHTn6AooAwvAnh+48J+DtI0W6uIruXT7dbUTwxeUronyodueDsC5xxnOOK3aKKACiiigAooooA
KKKKACiiigAooooAKKKKAOB+Iy/bfFHg7Tpjmymu3ldOzMgXbn8z+dd9XEfFqzl/sG01W2Xdc6Td
JdL/ALucMPp0J+ldfp2oQ6rYW95btuguI1kQ+xGfzoAsUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA
UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHdWsV7azW86C
SGVDG6nupGCK4P4f3cvhvWL7wheuWNuTPYyt1khJzj6j/H0r0CvPNLmbxt8Rhq9mAulaRG1qLgci
4c5yB7Ddn8vWgD0OiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK
KKACiiigAooooAKKKKACiiigAooooAKKKGYKpYgkDk4GTQBw3j7W7nULqDwrpDf8TG+H+kTDpbw9
yfcj9PqK6rQtFtfDuk2+n2abYIVwCerHux9yea4/4RxrqFnquuy4e9vrxw8hOWCDBC+wGen09q7+
gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA
CiiigAooooAKKKKAClpKKAPOte0e7+Huqy+INEhabS5ju1HTUPAH/PRB2xz9PoTjuNG1m01/Tor6
xmE1vIMhu4PcEdiPSrtec6xo958OdSl1zQ4mn0eU7r/TE6IO8iemP0x6dAD0aiqej6xa69psF/ZS
+bbTDKt39CD6EHirlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU
AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFHXg9KKKAPPfDMTeDPH17oC/wDIN1JGvbNeyMPvL+QP
4KK9CrgfiYTpWreF9bHAtb3ypG/2HHI/IGu+/WgAooooAKKKKACiiigAooooAKKKKACiiigAoooo
AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDl/ibpZ1bwPqkaj97
DH9ojI6god38gR+NanhbUxrPhvTL4HJmt0Zv97GGH4HNaNxAt1BJC/KSKUP0IxXEfB+4aPw9d6XJ
/rNNvJYNvoCc/wAy1AHdUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF
FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwfhUfYfif4us14jmSG6VfcqNx/EtXeVwefs
fxoX0vNKK/ir5/ktAHeUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF
ABRRRQAUUUUAFFFLgnoKAEooooAKKKKACiiigAooooAK4LxV/ovxS8J3H/PRJYfzUj/2au9rgfiQ
p03X/CmsIcmO9FqyHoQ/f8g36UAd9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA
BRRRQAUUUUAFFFFABRQSFBJOAOSa4fWfiJJeXzaT4Wthq+pdHn/5d4PUlu+Py+vSgDofE/iqw8J6
ebq+kxniOFeXlb0UV53N4C8RePpW1nUNQbRmm4hsvmzHEPug4IweT15/lXU+HPh6LW+Gr67dNrGt
HkSSf6uH2Rf6/kBXZUAFFFFABRRRQAUUUUAFFFFABXGfFywlu/Bz3EPM2nzx3qr2O3IOfwYn8K7O
s/xFJbQ6BqL3mPswt5PMz6bTQBNpOoRatpdpew/6q4iWVfYEZx9RVquQ+Esc8fgPTvPzzvMYPZC5
x/X866+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKbNMlvC8srrHGi
lmZjgADkk06uD+Kkkl9/YWhxyOianerHMEOC0YIyD7c5/CgCi0uofFi8kSCabTfCkLFDInyyXjA4
4/2f88np3mjaHY+H7FLTT7ZLaBf4V6sfUnqT7mrFlZQabZw2ttGsNvCoRI1HAAqagAooooAKKKKA
CiiigAooooAKKKKACuA+JFzJr2paV4StXKtfOJrtl6rCpz+uCf8AgI9a7+vP/h+BqHjLxbqN1n+0
I7n7KqN1jhBO0D67R/3zQB3lvbx2lvFBCgjiiQIir0VQMAflUlFFABRRRQAUUUUAFFFFABRRRQAU
UUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwniD998WfC0cv+qjtp5IveTa2fyABru64L4hN9h8WeDd
Q6BbwwMf9l9oP6ZoA72iiigAooooAKKKKACiiigAooooAKKKKACuAuG/4Rv4uQS/dtdctvLf085P
un64AH/AjXf1wXxeUR2OgXS/LcRatCqOOoDKxI/Hav5UAd7RRRQAUUUUAFFFFABRRRQAUUUUAFFF
FABRRRQAUUUUAFFFFABRRRQAUVR1DXdN0kZvdQtbT2mmVSfoCcmuWvfi5o6zfZ9Mhu9buj92KyhJ
z+J7e4BoA7evP/iaf7U1jwxokRH2me8E5I6oi9W/LP8A3zS/bPHviJv3FpZ+HLZv4pm82UD9f5Ct
bwv4Ej0G+k1O8vp9X1eVNj3VxwFHoq9h+P5UAdUetJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXCf
GTjw3p7/AMSalAyn0OH/AMa7uuU+KOktq/gq+EeRPbYuoiOoZOT+m6gDq6KzPDOsL4g8P6fqC4Bu
IVZgOzdGH4EGtOgAooooAKKKKACiiigAooooAKKKKACiiigAorA8SeOtH8KqVvLnfc9FtYBvlY9h
jt+OK5v7V4x8ccQRf8ItpTdZpOblx7dCPrx9TQB0/iHxtovhfA1C9SOY/dgjBeQ/8BHT6nArnF+J
Wp6yxXQPDF5eqeBPckRR/n0/Wtnw38O9G8N5lSD7Zety93dfPIT7dh+H6103oO1AHBGx+IOrcy6h
pmjoedlvGXYe2SD+hoX4X3V/zq/inVL0HrHA/lKfbvkV3tFAHI2Hwo8L6fyNMW4fu9w7SE++Ccfp
XTWOn2umQ+VaW0VrH/dhQKD9cVYooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvPvj78QJ
/hf8JPEHiK1to7u5t40iijlGU3SyLECw7gb8kd8Yr0Gs7xF4e07xZod7pGrWsd7p15GYp4JOjKf5
H3HQiuzB1KNLE06mIjzQUk5Luk9V80c+IjUqUZwoy5ZNOz7O2j+R8J/s3/tUeL7Hxpp/h3VVbXtH
vndEtbe2Xz4nILAx7QMjI5BzxmvsSP4x6FG/l38V9pc/eK7tiGH5Zrzj4N/ATwb8Nfix4gfTrCSS
8tYkksJrqYyGCNhh9ue/zAZOTjvya9/kjSZCkirIn91hkflX0XE2OyzMMYquVUfZw5UmrKN3rrZa
bWR4uR4XH4PDOnmFTnlfTVuy9Wcxb/E/wvc426vCmf8AnorL/MVqW3irRbzAh1exkY9FFwmfyzmk
ufCmi3mTNpFi5PVvs6A/nisu4+F/he5zu0iFCf8AnmzL/I18ifRHURusyh42V0PRlORS1wsnwZ8P
Kxe1+26fJ2ktrkhh9M5preANf0/nTPGN5tHSO+TzfzbP9KAO8orgf7J+Ii8DXNNYDgEwDn/xyj7D
8RYef7U0u4/2WiA/kooA76iuC+3fEW2+9p+jXY/2WZT/AOhCg3/xFuvlXTtHswf4mdmYf+PEfpQB
3tcxqnxM8N6PNJFPqcbyxnDLCpkwfTIGKxpPBvi3X18nWvEccNk5/ew2Ee1mX+7nA/r+NdRovhDR
/D8CR2WnwRlP+WrIGkP1Y80Ac5/wtiO+H/Eo8P6tqnpIsOyM/wDAuf5VA3/Ca+MXMbInhTT+jsre
ZcMPQEf/AGNehkk9eaSgDm/DXw/0fwu3mwW/2i9P3ru5O+T3we34V0lFFABRRRQAUUUUAFFFFABR
RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcDdf8S34y2b9Fv9PZCfUqTx/wCOiu+rhPiG
PsPifwbqf3Ql6bV2/wCugAH8mru6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK
ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOM+Lli934LuJouJbOWO5U+m04z+
RNdTpOoJq2l2l6gwtxEsoHpkA4/CofEUKXHh/VI5F3I1rKCp/wBw1g/CeZ5vAOlF2LEK6jPoHYAU
AddRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=</Data></Enclosure></Binary></metadata>