-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGNAT.BuildNetworkTopologyTool.pyt.xml
426 lines (426 loc) · 35.5 KB
/
GNAT.BuildNetworkTopologyTool.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
<?xml version="1.0"?>
<metadata xml:lang="en"><Esri><CreaDate>20161121</CreaDate><CreaTime>12342800</CreaTime><ArcGISFormat>1.0</ArcGISFormat><SyncOnce>TRUE</SyncOnce><ModDate>20171019</ModDate><ModTime>202230</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>ItemDescription</ArcGISProfile></Esri><dataIdInfo><idCitation><resTitle>Build Network Topology Table</resTitle></idCitation><idAbs><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Build Network Topology Table </SPAN><SPAN>tool builds a table for all stream reaches within an input stream network feature class. Each record includes a reach ID, the ID of the adjacent upstream reach, and unique codes for the TO and FROM nodes of the reach. The unique TO and FROM codes are generated by calculating the latitude and longitude in decimal degrees for each node location. More documentation for this tool is available </SPAN><A href="https://github.com/SouthForkResearch/gnat/wiki/Build-Network-Topology-Table" target="_blank"><SPAN>here</SPAN></A><SPAN>.</SPAN></P></DIV></DIV></DIV></idAbs><idCredit>Kelly Whitehead and Jesse Langdon, South Fork Research, Inc.</idCredit><searchKeys><keyword>topology</keyword><keyword>network</keyword><keyword>table</keyword><keyword>stream</keyword></searchKeys></dataIdInfo><distInfo><distributor><distorFormat><formatName>ArcToolbox Tool</formatName></distorFormat></distributor></distInfo><tool name="BuildNetworkTopologyTool" displayname="Build Network Topology Table" toolboxalias="GNAT" xmlns=""><parameters><param name="InputStreamNetwork" displayname="Input Stream Network" type="Required" direction="Input" datatype="Feature Layer" expression="InputStreamNetwork"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Polyline features representing a stream network. Can be a shapefile or geodatabase feature class.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="DownstreamReach" displayname="Downstream Reach Object ID" type="Required" direction="Input" datatype="Long" expression="DownstreamReach"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Object ID of the downstream (i.e. outflow) stream reach feature in the stream network polyline feature input.</SPAN></P></DIV></DIV></DIV></dialogReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Build Network Topology Table </SPAN><SPAN>tool builds a table for all stream reaches within an input stream network feature class. Each record includes a reach ID, the ID of the adjacent upstream reach, and unique codes for the TO and FROM nodes of the reach. The unique TO and FROM codes are generated by calculating the latitude and longitude in decimal degrees for each node location. More documentation for this tool is available </SPAN><A href="https://github.com/SouthForkResearch/gnat/wiki/Build-Network-Topology-Table" target="_blank"><SPAN>here</SPAN></A><SPAN>.</SPAN></P></DIV></DIV></DIV></summary></tool><mdHrLv><ScopeCd value="005"/></mdHrLv><Binary><Enclosure rel="side-panel-help"><Data EsriPropertyType="Image" OriginalFileName="thumbnail.jpg">/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK
CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCADMAZADASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U68T
+D+jaZ8KfHPjDwlaW66bp00p1O1jVmECqRlsFj12FFyOP3RGflFe2V5l8aNCnt7Wy8X6UWj1fRnV
iyD78JPzBsckDJzzjaz561LSevU9TL40qlR0KiXvqyfZ3TXpd6P1L/wr+MGnfFmG4uNLsbqC0ijR
vtM7RhWkLOskOzd5geJk2sSgQlgEdyG299XzhHr2jaH4qj1/Rr+xBiSTX9UvNcj/ALU1GzsLmZFn
gsbO2Ikt4Wkhk8yc7UEkQZluPmKfRwIYAg5BqlrFSPNnB05uEt0LRRRQScF4w+Ldv4V8VxeHINB1
bX9UayGoPHpiwkRwmRowWMkidWU9M9Kz/wDhc9//ANE58Wf982f/AMkVjal/ydBd/wDYnW//AKWz
131AHNf8Lnv/APonPiz/AL5s/wD5Io/4XPf/APROfFn/AHzZ/wDyRVH40R6vN8IPG0fh83g11tFv
FsP7PZ1uPPML+X5RT5g+7GCvOcYrwjWvFvxt8J+KNQsvD+gSXUN54kuY/wDibteXVpAoGnpaRwTp
BKzW00X2uV3fyUimLo0qCNRcNau39dP8xX1/rz/yPoX/AIXPf/8AROfFn/fNn/8AJFH/AAue/wD+
ic+LP++bP/5Irwhfix8WW1bXRdaBqlloFrqccE97BoU1xdWsJuNRVjbQiPNz8kek5KCZQLiZldgp
8rFlvPjHBeavYPH4gntdQ8SC785IJUNrDDquhgJCwdikEkE2plo97oUibBwshcj79/67f5j6pd2l
959I/wDC57//AKJz4s/75s//AJIo/wCFz3//AETnxZ/3zZ//ACRXjv7PUni+68UWB1MeKVtbPR76
31s+IVu0ikvmv1az8gXOPM2wC43PCCm14gWJCgfQ9H9fj+u68hf1/X5HGal+0EdIutLt7vwD4qhn
1O5NnZxlLQmaYQyzlBi46+VBK3PZD7Vb/wCF2Xv/AETjxd/36tP/AJIrF+KH/I6fB7/sbZv/AEw6
xUnx0t9fn+GOpt4Z+3HVreezugumyMlw8MV3DLOke0gsWhSVdg5fO0A7sFFJXdjW/wCF2Xv/AETj
xd/36tP/AJIo/wCF2Xv/AETjxd/36tP/AJIr51sfil8StM8cWej6db6ncJr1/qGrafZ6rps7zNaf
2zawoJhJh7SAWcly4DiPaRF3Iiko+G/iF8eNRbSbrWbHUrS8mmOmeXY6HL9kbde6Ostw6SQh49kU
2p7Wkwg8g7WmUebKRu1FtWum/S29/np6idrySd7NL79n6W19D6Y/4XZe/wDROPF3/fq0/wDkij/h
dl7/ANE48Xf9+rT/AOSK8Kb4ofGuz1bxgmpeG1h0fTtQit45tPs7u5u1tm1MxrNEq2ZSbdYDzGEP
2kpJgssO4xR58fxI+Plz4dN3LoM9nqSWEZezi0csPtI0GW7kwTnOdQijt+MjErKCWZHVXvHnH9vk
6n0L/wALsvf+iceLv+/Vp/8AJFVNS/aCbR44JLz4f+LLdJ7iK1jZorX5pZXCRr/r+pZgPxr5x8SS
fExf+Ext1HjRdW1KPxPbeHDaLfNBHfyS2P8AZhd0zHDCMT7XmKxKvmZOC2foX4reZ/YfhnzSrS/8
JLou8qMAn7fBnFXb3VLuZqV5NW2Zr/8AC57/AP6Jz4s/75s//kij/hc9/wD9E58Wf982f/yRXS0V
JZzX/C57/wD6Jz4s/wC+bP8A+SKP+Fz3/wD0TnxZ/wB82f8A8kV0tecftEQ+ILj4OeIY/Cx1Aa8w
gFsdKeRLn/j4j3bGjIYfJuzjtmmtXYDov+Fz3/8A0TnxZ/3zZ/8AyRR/wue//wCic+LP++bP/wCS
K8b+J1h4503x5cS6VFr0ugwW/hlpZdPvryXyANXvHvnhiBP2h/JFusqHnymBw4VY3868WaL8WPEX
gHTdDsLzxrp3imG1Sy8XahFPeRK11Nq9iRNYyghGXyhfOGtjtjgOyTYdiCLuzdu/4GnKudRb3t+P
+R9U/wDC57//AKJz4s/75s//AJIo/wCFz3//AETnxZ/3zZ//ACRXlH7LN18RNZ1Dxzqvj6x1fTZb
64tZrOx1BpDDAgR1Kwqx2pkKjMFA+ZjnmvM72x+Mtj4wkQnxVd+GVfWNRuJIribzTZnxJZFrSIAh
vNFhBdNAQd5iuSkOCBVpa2Zk7p2PqP8A4XPf/wDROfFn/fNn/wDJFH/C57//AKJz4s/75s//AJIr
5r8UXXj+R/Eslh/wnA03WrDxFF4Njji1ATw3UkelCxN18u63BuV1F42vNixxuQSi/KPQf2c77xeN
e8WWHi7Ur+5uY9W1aSC1vdA1WDy4DqUxhZL+eU2k0ZiaMxxwopVCo5CNSjqk+/8AVh9/U9T/AOFz
3/8A0TnxZ/3zZ/8AyRR/wue//wCic+LP++bP/wCSK6WigDmv+Fz3/wD0TnxZ/wB82f8A8kVRh/aD
+0a9eaLH4C8VNqlpawXs9uEtMxwzPMkTk/aMYZracDnP7s+1dnXnWh/8nGeO/wDsUPDf/pdr1AHQ
f8Lnv/8AonPiz/vmz/8Akij/AIXPf/8AROfFn/fNn/8AJFdLRQBzX/C57/8A6Jz4s/75s/8A5Io/
4XPf/wDROfFn/fNn/wDJFdLRQBzX/C57/wD6Jz4s/wC+bP8A+SKP+Fz3/wD0TnxZ/wB82f8A8kVy
nxK0bxPeeNbKXwzcX1vOfC+uCGQ3MosU1LfYCxaZM+WSP35AZTkeZ15rM+CI1y48QTyGHxNbaHb6
Bp9jdQ+KXuGnOqxtL55jMxJfCNGHmjzDKxQxu+1zSj72n9df8rerXcHor/10/wA7+iZ33/C57/8A
6Jz4s/75s/8A5Io/4XPf/wDROfFn/fNn/wDJFfLPibQ/je3jjX7fSp/E1xpOo6j4hmtFS5kha3UQ
rHFEkjusaJIuw22cKkolbcARjotf1TXv+Ewj1m3t/iIPhvd3UyQ2sMOqnUGk/s1o2Pkj/SYYjMIl
TzQgEqSSAhXV2b0V/K//AAP09QekrebX42v+vofQn/C57/8A6Jz4s/75s/8A5Io/4XPf/wDROfFn
/fNn/wDJFeL/ALN83xD03xZqulfELU9Rn1EQWha2udF1GSIzDTLATyRaiJTY+Wbhbn90sYYuWYNz
g/RtO2ifclO5zX/C57//AKJz4s/75s//AJIo/wCFz3//AETnxZ/3zZ//ACRXS0Uijmv+Fz3/AP0T
nxZ/3zZ//JFbvw7+JVp8RP7eih06+0m90S+XT76z1BYxJHK1vDcL9x2BBiuIm6/xVYrhfgX/AMlH
+O3/AGNtn/6j2kUAexVHcW8V3bywTxJNBKpSSORQyupGCCD1BHapKKB7ao8M8G/D7StA+JmpaFrW
l2+qWrwibTJryJZV2h96qQcgspDYLDKlZCu3zG3e51558Ro1tfFnhS8t3aO+e48n5SRvTcvH0+cj
3DGvQ6yhJuUo9v11Inj6mOxNV1UlKNlddfdWr8+4UUUVqUeVfED4Y6H42+K2hzX8msWdxJot4kk+
i67faXLIsU9sY1Z7WaNmUG4mO0nBLZOcLh//AAzf4T/6C3j3/wAOJ4g/+Tq0/F1zrtv8TvDx0bTt
Pv3/ALH1DIvr+S1GPOs93KwSdMJj1yemBnQ/tTx7/wBC14c/8KG4/wDkGgDnP+Gb/Cf/AEFvHv8A
4cTxB/8AJ1H/AAzf4T/6C3j3/wAOJ4g/+Tq6P+1PHv8A0LXhz/wobj/5Bo/tTx7/ANC14c/8KG4/
+QaAOc/4Zv8ACf8A0FvHv/hxPEH/AMnUf8M3+E/+gt49/wDDieIP/k6uj/tTx7/0LXhz/wAKG4/+
QaP7U8e/9C14c/8AChuP/kGgDyDxn8N9D8I+OPDmiLbePNUtNbS5FvNb/E/xBHOZobeWYxKsl0sB
ZhGoVTOHbc7bPLhldeI1+68NeFZtGGqaL8R449Q0n7fttviZ4inl88W19cPbxKtziXYLHazBgQ1x
ANp3jPqXirxENH+JGn6lr+k+HbfxJa2Uj2iXXivUPssSiOd2kSH7H9nFx5Md3hwvnGJJwD5YcVny
3VrrHiLw/Dc+GtHh1VrGaDT7G88SatamGN0nUu0D2SiKZo0uxHK6rKUE4jbbvpO7tbz/AF2/rpsU
mr6/1sY+k/B/wf48034fay9x4yjludXuEMT+PPEjyWkiWl6jBTczxTQSjaUb93G4DSIcqzBvRv8A
hmnwj/0F/iB/4cfxD/8AJ1c3okWvzeF/BZ8D2Phd9Ki1Ca4sNQk8S3mqpdM0F0JHeZ7cSTFi8jea
ZGLNg5Oc11XmfGb/AJ4eBP8Av9e//EVTtfQhX6lX/hmLwaZhMdU8e+cFKCT/AIWL4h3BSQSM/bum
QPyqT/hmnwj/ANBf4gf+HH8Q/wDydU3mfGb/AJ4eBP8Av9e//EUeZ8Zv+eHgT/v9e/8AxFIZD/wz
T4R/6C/xA/8ADj+If/k6vMfid4J0H4b65BbCx+IOr6fJY3V5vtPin4ia9YQW080pS1W6YtGpjgiM
hZfnu4lAZmAb1TzPjN/zw8Cf9/r3/wCIrzDxd4T8VN8TLbVtXk8O23iTU7NdNP2XX9fhs5IT5qRJ
PFE4tlJaeURmVQTIx8slxxLvsilZas5rw23gvxH400Xw5EPHouLyw+2XEg+JXi1BHIz3kaWqea8Y
WfdYyBo7o2xByF3lGA0Lr4a+H/E3w38P6+y+ONHvJvFdtpc2nX/xD1q/8jZq/wBkflrxkEmELB05
jYgo+VV6doWm3Wl6x4Tu9NfwDJfW813Y6fef2tq84nnjuJIZftUrFlnkW5nmRZLkuwluJAjb5W3b
mrWPjf8A4RTT1tI/BU2h2vi62nmTTL28Z2vf7YUzJvdWC/6Uzh+Ds+YBeAtaO26/r+v8iL9P6/r/
AIJi+P8AQNI8DeINW0/+zvG2oQ2lpHdxSwfFPxLLLh7m3gQTQwyyPG0rSzmFE82SX7NIFTOQvO6/
q/hvw1Z6XdXmmeOJYdW0Oy1iw/s/4q+JL0ym4uLO3ESmCV1n2yXZybRrhtqRnYDPCr9fr+k6FY+K
vGa6hpkMGtas0d1qlpB4/wDEA86YPaKktrDHb7ROjfYU3WqiSPzIUyokAZrTeDbhLmO30XwrLDNo
9pDZx6d4w1No47MfZPI/swRWm2N9z6c26zxJuazYncYTU0/hXNr/AMN/X9aF3V9P6/r+u5yseqeG
b77T/Zun+NdVjhW2i+02vxW8RmAzyR6bLI5YzBltYotUSRp2UMFglLRLgV2Wo+EvDNt8O/Cviqys
/iNqS61qGnWE0MfxM12JLBbm5SB5naS9V2RGfACxl2JQFUUsyVra+8GWrXb6dpnha3abRLez83Sf
GmpxlrdltRCIGhtB/pbLJpwDRH7SwezGSDDXXa3rB8MfD+wub7w1pLeEttld28kPiDVbuGBLby5b
eQ7LFvKRTFGxZtqsR8+STm7x5tv6/r/h+ou39dF/wfvPPfFGk6X4QutXbUdP8XJpFhrMWknVIvit
4qmijBtpLmW4uPLLGCKNPIDSHKKZH3uixlm6L4a+C/C3xB8XeMNEc+ONPGgTiFJ0+KPiCY3C+fcQ
7thulwM25+ZDIm4vHv8AMhmRL3jPUNHh8O6pp2vaX4Xj0ez1uWTVYY/GWoLGLuSJrueO88u0+aAw
ytJJFNmARH51Ea8Wtc0bxh8M5tR1zwtoHhLRNR1y7zeyXd9qutyXLEySCOCCKBWjUNJPKUjGwGSV
9oLOxiPwq/8AT0/4P3oHbW39L/hjznxF4S8G61pfjW9/sDxlqp8I3UkJtdW8feLUnmhWSWJ54lxJ
vRpIflaEyIVDF3jKFateKNN0rwvJqkP9h+PL6W2uIIYLfTvif4nvplSR3w9xFaSTPFuhjaZFjExK
ld/l5FbGsX2htD4hXWbXRZL+4vI11OSy8a61E8k8fn70tVS3LrCDFemSKAmMeXc+YDslIW70PRtG
j8XSDSns4b/UYpL9rH4geI1je8lbeq2XlW+Fdt2GS0x8p2MNvy0o6WTf9fhv/W+jnu7K2/8AXyM2
TRtHuvElzoOm2Xi+61O4eRdJWf4seJYorhYmQSPO4kYQqyOJItnneYhUnZurd8AeAtE8d64myHxn
Z+G5dDtNaj1Nvir4hecfaRuiheD7QFVgqSsxEh2jy8bt52weJrjQ7qfX7fU/DttBJfRWrMYPFGvQ
BY0dFi/s5o7ICJS2wt9iKh+Wfdya7aJrvQY4rex8JeH/ACPEk1vMkel6/fzRTLFHBFGQIbErHbiO
OFT92EhsNnzG3Ppf+uv6k9X/AF/Wn9dvPG03we0MDxW/xEdrnxDb6RAjfEvXgTaSvbKL9v8ATDtQ
/a4SE5Y+YgOzL7M/R7LRte8N2+tW2k+OraGXUGtfs2qfE/xRY3BRjH5CxxTOrSzzCQlVQGH92/8A
pHGa218C/Dq3jheD4b/CeFU8SxRW7WusFNmsI8IWKEpYfLIGgiDRpx+7YOOHrWs/hba+KtVeWy0S
1utQ8N6xMzTWnxM1xJLS7kiiZ4SyxA7BE0YEBJjRXZVVQzAuK91X3/4Ef+C/mvk3s/67/wDA+5nc
f8M3+E/+gt49/wDDieIP/k6uf1T9m/wrpd1ruq6ZH421LXBpsQRI/iFrcFxe+WZ2igadr3OwM77Q
xKoZXIA3Nn0P+1PHv/QteHP/AAobj/5BrlvHEuv6l4d8UWvifQ/Ddr4em0lk1SaTxZdWiR2pWXzW
M6WitGAm/LBl2gZz6S9FcFq0jxXw/HoniLxTouh29h4seTU4ZpYr2H4u+IpbWQB7tIXjdZf9VJ9l
DLJKIvMV3MAnEMmLM2k6da6RpmpyaN42e0dtQOpKnxU8TRz2UNmsrTTCGZ43ZPkiQbxGS88fGw+Z
Wlpc3hOxvtIm+xaO99ZWlygm1rx5rU08UK/ag63zXFsWzHsv/KF0cx7Lnytu2THQeG9csNHXRLOD
RNFklazvrWIa74o1W4uBBLKhuftjXVkzjdJDGoa5OTtCKcHaRtdB9VfY5CPR9KtfE+jaBqmneMLb
ULi+Wx1A2vxZ8Szw2pk8oxMkpkVCCs0f+vMG5yY4vOfCmb4gaJovgHxHq2nyaR8QdSt7W0S5gfT/
AImeJbu6cPPbQRNLbQTSSRxvJPMFK75GFpMVjYKcaHhSPw00ng5dJ0fR7h4pZn043PjXWZfOk80Y
N4ZbU+cVk2eR9q3bWCeRghav6t4PtdE17xKZNKaTW7+ygm1PT9N+I3iG5ufKJjgiuVtYIGaOT/R0
UTxoH/dP83Dmm/hS66/kTHR662t/XzOV8XL4W8KW+n3B0/4gX1pqGjwahZXtv8TvELxXU811Z2yw
xotyZige+jLOYg+AQkTt8tdL4j+EXgq9+Df/AAl01p428RTCyW8g0ePx/wCJpg9wwCrEA03nA722
nMHmL8wMe4banutc0bXPDOntL4X0B9GtdEigsrmPXNUiWK1nltzAkUq2AIuWlitWiCn7RvEbR8kE
3Wbxtb+BzMI/B8Hwsj0zzPLh1nVk1NbYQ58wX6p5om3fP5gj83Pff89GlrLfX83b8LL5D7N/1sct
D4L0aI+GLXTdP8WyWutafJJZf8XR8UWiQTxRlmt5RMyCHZtwUJ+0ALKfs5EMm3Et5NAm2B9M8cxt
Po11qdk4+J3ipodRlie62w2s27y5fMitluF+YSNDKZFidUY10PiTQfD2rWLaTrvhu3W0m0RrVrW8
8Za/CrQlHeTINqP9OeMyl2P+lyRvJuLIzZsWM+jBbe5/s6DUE03RrpvteoeONfuxp9vuuY5pppJb
VvIulK3cPmyFbhAskQYBSgfV/wBd/wDgfiSmtNf60ODj8VeEJLuKNNN8e3MK2+pPM1p8U/EMrtLZ
PqCOkC/aB5wkbTmMXKySq7OkbLDMY+y1Xw94as/hPYeMLK3+IOr3l1di1OmWXj/xfI0LCVkl3opN
0rRrHIWQ224Mu0gfeFm1sfDEd9oz23hjw/LqMGnXMVrFD4q1aW5bP2sTGSMWZd74k6j80gN0W+24
O7z60oY7Ob4Q6jeJplrpfg3To52vL9vHWuWFzAbaaV7iR5jbJcCXzPOEshbzJDuVyw4puLvov6u/
+G3KvGXw/wBaaf5nM6poui2kesXFla+LNRs4bC71DTJY/i54iBv0tHijuFIExCMXmQRbS4kByTHw
D1fg34YeH/EnijUtCvU8eafc6Zp1lc3VzD8TfEE9u11MZlmt4XN2hkWJoQvm7VDFiNqsjAM1rTdK
8M6xr8t54V8Ox34XSbq7sLfxTqc3kqbkLZCC1jsyIhLPaqCkKDzmhHmB8VpeExp9l8U9YvdC8BeB
9M8eX1oXvriLULi1urqHckshLHTl8xg1xCZcZZTJCJMEpSs9P6/rp/W6drPXX9NP+G/rTpv+Gb/C
f/QW8e/+HE8Qf/J1dB8O/hvoXw0k1u20OO+xqNyl/eXGp6ndajcXE/lJDvee5kkkbEcMSAFsAIAA
Kf8A2p49/wCha8Of+FDcf/INafhufVria8bWbGysLv5AsVjePdIUwcEu0URBznjaeg55wEBuVxPx
i8Waj4L8B32p6TeaZp+oRldlzq6K9vEgO+aRka4t1YJEsjnM0YCozFvlwe2rz/42fDOb4r+EY9Fj
k01Y1uDLNDqdityk0ZhljKIxOYJcyBlnUMUKD5WBIJa7SYXtqeE+MviJ4v1z4i/BvRLmVP7cOqyN
qkWmWqxpPbrcwgyeWs1wIgvkXKsgndlETFiobaPravkHwD4fmtf2udF0JVuJ5PCek3TXUlzfPdlF
meaVCJ5T5k5C38KGSQb2YMzZ5Y/X1eljIxpwoxjGz5bvu229/lb/AIYfs4w2Wr38/wDPTT0Ciiiv
NEcjrFxHb/E7w80hIB0fUhwpP/Lex9K6P+1Lb++3/ftv8KwdR/5Kh4f/AOwNqX/o+xrqaAKn9qW3
99v+/bf4Uf2pbf32/wC/bf4VbooAqf2pbf32/wC/bf4Uf2pbf32/79t/hVuigDzH4geB/wDhPtUn
e9uYLjTo9PntrG0uEmEdvcTRSRS3B8vZIzmKRogVkQojy4OXyOe0L4O3eleOLXxDceMdQvt8pF9b
XDXMizWok1J4rMgvtkRP7RjUNIrHFqMAFwY9L4g2erX/AMafBsGh3niKyZ7W7TVprJboWUFq1vOI
Z90oexaVLjyx5RjM7F4nyIYpEk4DxF/wszwz4t8EXXh1PEXim5h0Yi60u5aeOOQRQXu4zSSeXaNL
NNJZcu6Sp5HyApJI0Z8Nkuv/AASrtpq/T+vR9j2PS7ODw3BoNibk3BGrXlzvELLxKt1LjHtvx74r
rv7Utv77f9+2/wAK83+FN1rd14J8It4istcsNWTVb2OWPxI0DXzKPtYR5PId4vmXaRsO3BG0BcCv
U6SVlYhO+pU/tS2/vt/37b/Cj+1Lb++3/ftv8Kt0UxlT+1Lb++3/AH7b/CuV8X6OfFV9pivdxx2F
leW18mIZRKssUhZgedjq64TBUbPmYFjt29rXlvxYt5rvxp4Fh0+XxAmotfESR6aNRS0ktDgXAmmh
YWsTKp3qbkMzBWSHbKyui6r1X/D/AC3H0Zzmu/AuHWtN0+yj8QT6a9tr11rQv7KOZJY/M1UajHGI
ixgl2sqqDNHIFPzKoJIOpceF7X4f/Day0SDUbjUII/EmmzQtPCqGONtVt2CfKig4B6nknPsB59pe
h+JfDk/w5urP/hMr+11XUpNRNjquoa1PNbJcTxgRXL+aVhFta7X2Xe6N2hljCeZNvXS+G6+J1+Fd
8PEL6nJaDxhoyaS+sfa/tD263GmrK5+2KtyA10LtgJVGAwCbohGzEZc6ctv+H/p+mvUc07uL6O/z
/r9ex2/iz4eN4u1vUNTvL9ZbnzLVdOY+an2O2iuYLiSFNiqyGZ4FZ5A5OUi4IjCnH8KfCfV/CsXh
Hb4lsrufwz4dXw1C4064gW5t2+wecxVZv3Mh+xy7XjPHnR5VvJw/F/EnU9V1bxp4/TR5fiDpkVnD
BbXBbTtdktrzNzZl7iyFuEURwR+Ymy0dZ7gvOSVWNZXoag3jlv7HmEXjmAr4Y0keLLYSahLLBL9r
043IhkQCO4nNp9tBOnxxyK0chYM8sQjulJqPuu3/AA35W3fr5jcbys/6/r/Lra3R6L+zPDosaW76
7Fqdmlpa2/k3Frcwn9zFpUYMbQyoYXH9l+YkykyI8kZywgCv6TY+CltvB/hLw7JqKz2mkXVrc3jS
QSyG8MOZV27yWTFysUgJZiBHjJzmvEfBp8cLrGqDxsfG8Nv/AMIlAs7Qrqk4WX7JYfvY1syoaU3B
uw0UBF0DFKzSGKaJYuj+It34qk+DPgi2sP8AhK38RWq24lNlBqcdxPdfZi0SO8Y3KHbAMt2ZIIif
9JWQjaSWrSb6rb1/4H5ruKT766fLZf15bnT/ABV+DK/ETRPEthba2umnWbua4EjWkrLB5ulNYZKq
y+Zgt5hVjtcZRh824anj7S9R+KOn2tlHaal4RubCWae21W4mHmRyPaz2yywm0u8h08/fiVWRgCuA
xV0x7HwPqy/8JVrOn6v4x037T4ptTDYz6ldXIktLedY5FWO5MnlQyyNcSEweXuiWIZ8sYNv4NQ+L
Lf4ofEiPVLrU7zw2s6fYptRW6VXuWubt5BCtwoxGkD2cf7jMB8verb3lVFGTdl8/y/rv5BrFu3T/
ADt/XSxJrnw/1nWtV1e8k8QQourLBYaglrBPA9xp8Ml26Qo5ZzBIy3EcbyIOQszIInlQw0Lj4MKy
WwtdU/s9LHV7jV7W0s5b6K3LzG7BH+uLwkJeEfuXVSyZCIhWNOP15fEf9mfFeHULzxTPey6gG0u/
0uw8QqsMnnT/AGe3jjhmXzEWIQ757YJAS483zNhJzPE11rGuXXjaKz1P4h6DBb6lbx3txfaT4gun
uwksjE2cdmsIWEOIogbKRfMiDyTFgQzJNyXr/XTe3Zd00rbKS5W12/T/ADX6p6o9dvvh0byw1U3G
qJf6vcNZLBqckdzbXKRW0IVFaa3kSTPnPcycMARcOhGGJNeT4XG3t/Altp+uyWQ8LWEOmpfRC5ju
JYUlsndSqSCIrKtmY2V0fHmAqwwyv5p4ptPE9xJ4/Fxq/ivThdTWNzcSWemeIrkaWqPF5drarbTL
9rEir+8ew8vZtl8528wY7D4Y6p4otvifq767o+s2i3OmQGSGabU7q206Um3SGFHdmtbguHk3yQKG
iNu7TORMNjTad+r1/D/g9OmuyRKfLtpbT+v+D3XVnW6n8PbK+t9QiivI7Y3HiCw1mJlsz+5jt3s2
MI/3vsY56DcODt5k+FHgG1+Fv/CUIutXmsR6xqaaisl5CPOUiztrdjI6qPMdmtzIz4GS/POSfIvh
na/Ee6+FukvrVx4otvElj4n0l9VVVulOoO8tmL5GW4LsLeJjOC1q0dq4QsiiMstYOl618WtU1+5v
fEfh/wAYaNaDxQ1wmmXDTyB5TaaYbe1jfTbhgtrn7evnSMbVWO6dWk3KKgnGMoxei0/9IWn4fd5m
jbs233/U+uP7Utv77f8Aftv8KxNYvri4XWo9IuobTVZLBVtLi8tnmhjmPm7GdAVLqGwSoYZAxkda
6auS8d3QsfD/AIruGfWIxHpBbd4ftzPqIwJv+PaMKxab+6Np+bHFZvYlbnmtr8FbnSfE9n4g0jX4
7XU4bVQ0moW0t0JLtRqBNzKIzCJTLJf7nXChBGVi8vflHal8DItS1DV7mPXrrTk1q1azvY7eS5by
4zPdTEL8wWXebyUN5qtjqu3jHBeB5vE8njjwdNM3jtvDbWd1J5Nymt7UDPfmWFzPHHLviT7Ioe8D
NPvjNr5RicPq2aa0ugeEhpFx42u9aSXU3skmttctvtVqfN2LM947xW8i5XadRWVm2nygu5Nq0VrL
+tP67aSts7ttt3b7frb+nrqr7nYN8JLjVdWsdV1bWLc6l/adtqV7Jp0V3bxyfZ3gaOMRecUkU/ZY
+ZQ5QtKUxv47Hxj4Vg8WW2rpHqEmly6lo9zpck1rE4kjaYKPNVxg7lC8HrwORivDfBq+L4n8BG0u
fFd076mywPqEOvQxrarPA1488V5vIDRG4jRdQkLho91rkSIiepTeC77xF8RPEut2WqeKNCsptDt4
7WaPUrsI9xMSZWSyuC0ETRxw26qViDBp58/NyHL3YKdtI3f4W/FaW7303ZlG3wp2vby7fNW/T0KH
iP4OJq17rhsNXXR7G/vbS9FraJdLG/2f7BsjkQyMiHbYlBLAsRVZVwu9GeTYXTbr/hD9P8Fy6TeX
FvapbK2sPIqWj+UySYAS6F0vKbFYhiDhmEi7t3F/B3/hMf8AhcGdeXxMln/wj1sFTUWu2tD/AKLZ
Zk3Ni3EhnN0pjIN0rRyOztFLGkep4ojvYfi54sn1W+8S3WiyaF5SWWj2OtrHZ24QEzRTW0iwy3Bl
Lr5cCG62lCrhVK1U1yy77/1+H536l9Len42NvUvBWsXh0qaPxCqahpMt1NZXskUsskYnikjMTCTc
r7PMBWVhnEaKVILlsy7+DsTWttZ2Go/2bZLbzQ3cHm3ko1HzILtWW5xIm8tPd/aWlUJIXU85O4eY
w3WualJHozXnxF0rUrfwxcefr0una+9pPFJDMsMdvCoO2dF23BaZzeq5hg8yWQyeXoaHN4qbX/Dg
1bR/Flxo8mh3UEkVpd6/BKbZUu2F6Wac+XcSlYAtrcM92n2pNrqbZ98O0Ve39Wfz/ryKjdtJf1e3
9f8ADnU+Ef2fYfCXiHSNTh8RSSix1CbVNk0EszmV31hghkdizgf2wcuxLN9nycmQldnx58FbDxp8
A2+GK67d2VuukHT1vjD5xuJfs7xCS4R1O/8AeMsxwwYuincCMnjdD8P+NfAfjn4ZxjUfEmoWcel/
afEUNxcanqMUC+Tey3K+ZJvSZmuZrRY1LG4RbdFRWjdykXjvS/G134X+PyaPr/ixfEEmn3Vzp0ul
WOoQNbPHE5tbWya43wTGVFQM9jGjq27L+YyOu8XL2iitH8tLP8vw0t2GnJuM79u/XXX+ut+rO3h+
DsOn+O/EviaLXbjUX1uKwE1vdxtbv5ltNdOredbLG3yrcRRpkNhYQG3ZBXd8CeD5/D2sQalr2sSe
JdStNMi0q11K4jZZI4gsXnEJt4aeSMSSNuJYrGOiCvMfjk3xL0K8+LT+FY/GXiJdU8M6cmmR6V9n
A0mUjUhcNZh3gDSfu7csQ0s4aeIhXVY4x9GaPdS3uk2VxcWk9hPNAkklpdFDLCxUEo5RmUsp4O1m
GQcEjmpkrde35L9NBSvdN9f0t/mL/alt/fb/AL9t/hUdjcJcahdtGSV2xjkEf3vWr9VIP+Qldf7k
f/s1QSW6KKKAPGtWsLbT/wBp7RruztoYbq+0tlvZo4wryqFlxvYfe/1cY5z9xfQY9lrxr45M3grx
B4b8fRPJHDYzLa3xXbgwkk4+bgZDSLk92XBBwateOfjOnhm80LV1aQeF7mFbmOSGNJX1RJEGCmWU
W0aF4i1xO8abmSMKzSoR52FlP2taE7/FddrNK1vuZ7+YxU8Pha9Pbk5X3vGTvf5NfI9boqjouuWH
iLT1vtNu4ry1Z5IjJE2dskbtHJGw/hdHVkZTgqyspAIIq9XpNNOzPn07q6PP/F3hez8RfE3w8l3N
qMQGj6gf9A1O5sz8s1njmGRP7xz64XOdoxf/AOFU6L/z++JP/Co1P/5Ip2tNcL8T/D3kRRyH+x9S
/wBZIU/5b2Pop9q6HztS/wCfS1/8Cm/+N0hnOf8ACqdF/wCf3xJ/4VGp/wDyRR/wqnRf+f3xJ/4V
Gp//ACRXR+dqX/Ppa/8AgU3/AMbo87Uv+fS1/wDApv8A43QBzn/CqdF/5/fEn/hUan/8kUf8Kp0X
/n98Sf8AhUan/wDJFdH52pf8+lr/AOBTf/G6PO1L/n0tf/Apv/jdAHj/AI30WHwv428LaPHNq4sP
EE01pHeT+KNX/wBGeO0ubhpWP2gIwHkRqIQ4dhJI4IELA+a/8LCdY4YodK1zU9Rn0X+2bGzh8S69
EdSWaLUJrOBH3OkM7x2UJaKQ9bhwjMYQJfaPGWreDNP8UzjxCmi/29BpM2pyW0l5JJKlmgaF7jyl
jODtmkiD43EPIikgsKyf7e+HHxAbTJptO0bUbqXT7kQabeRTpdC2iWe3mWSzeASLsEl1DtkjDL5s
yAAuwJdW1/rf/gfiUrX/AK8rf1/mVvBeiaP450nR9QMvia3kXWb3TpBLr+rQljB9pj3qks4ePd5Y
baeV3FcnBJ77/hVOi/8AP74k/wDCo1P/AOSKx/CWsWGraH4XuvDNlHFpT6jclY7j7RbzibZc+d50
c8KyrKZfML+YN5YktySa7vztS/59LX/wKb/43TZCOc/4VTov/P74k/8ACo1P/wCSKP8AhVOi/wDP
74k/8KjU/wD5Iro/O1L/AJ9LX/wKb/43R52pf8+lr/4FN/8AG6QznP8AhVOi/wDP74k/8KjU/wD5
IrjvHWh2XhTxJ4J0u1g8RXyeIdUm0555PF+pxiApYXd0uB55JJa1C9MAMTnIAPqnnal/z6Wv/gU3
/wAbriviD4g0W11LQdP8TaT9olmlmksJo7W8uIYZTC8B3TxW7JC7pO8SB2VpDIUTcxxRddSl5nnn
h+T+0ptFje11i7tdQ1+bR01a18Y6qltPFHYyTmeFWmLMPPjeAfwsImkDYKqasem2/iXQdegv/wC2
La+0LxfpOjSMniXVHSbdNp8ruIppQyYNyyIxGWEaTIVDpjovCHxQ8D6/Z6NZadYandxf2lcWtpFq
2m6xvtbiGMRTeZ9ptd0EarN5e+TbHudkB3ZFRWmveHNd+HKT+DrSGOxXxLo6XQmFzBc+eL2y2eal
xEsvMPkbCwwYTEUymyrVtXbp/lr/AFfcj+vz/rpsY/jm6Xwp4uvtKto9Y1CzhhhkkuLbxRrM81iZ
bm1giWWGOYtI8qy3cixphttp380bMTSPFkWp6Rb6tdrf6ZpreEl8VX0ln4y1XVH0uMw28qJIsdwg
l84tepHsIyLPcN28rH3HiTxh4E0vWvFFjqcF699GYru9toBq06zyiW3CPaLHCVnmjka2B+zbpIy0
YO3IrN0nx58LdBjv7bQbA3Vk+n29w2n+H7PVL6zuLYxW0cX2e3t7Z4pSkLWgKwqzRRNGWCoRUQa5
fe+/+tCndX0/r+v6Zj+GdTvdT8Yan4ZvtI1Uazp9gzyw23jXVfKN2trYTGPzjLtA3XsileZFS3WT
awnRRsT3Glx/DXwV4unm8RabY6xZwahqdy2va3dw6dA9qZmZvKm4Abau9yqqpZieMHb0H4keAtU1
q68VWlrb2k8mjrqd1rl9aXtnax2sqQHMs81skUczxpbExswmMccJK7FXFnVdX8CWngbwjd6gulWn
hrVjY6bocM17PEt0LlUjt7VITGGZJE27oSu0qpMi4QkVHdq3VfLWV/8AgeasErNK39aL+vmcD8Tv
E0XgDR/Fd9HpmuztoupS2sMUnjHVf9JiTS/tu92WYiAM48ou25I0YSucBkGv8ffhF8N5PD+k3PjD
QtS8R6Yl04e81S41XWYNLjFvLK9w8azEomIQhfKgF1yex6rxdqvgDWV1aw8RReHrhRrcGl3tvd3b
4m1Ge1jRLZl8v960ltOitGMho3YMCu4UunXnh74sanq+i3EsfiafQbgrPaagrwLCzedAzRt9mj82
NttzAzIXjbbNGScOtLRpL+raf18wi0nqef6ui+DZNe0i3tLjT7PQ7e1ktdvizWkh+zytdR2sECBx
58rtBaRhIgAr3ZRTI0IErNW8TWmn/uJLLxfYandaudNt9Pu9R8QPLDHHHO8txiOVjdKRaybPIBGG
iJYBsjptX1D4fWLa9ev4evI/7D1QT3N7pVhq2I7yQ3Ake2lgtv3mDPd+cYCyo0sxl2lmJi1Hxl8M
7O18Rwtp7XENtep9oXTbXU7nzrqSd1c2Pk27GeTz3lExtNxWRpPNwxapupK8Xe/9fjp6ra24S93f
T+rP8fu2dzJvtUEniLVdK06w1+eO10vRtTivoPFOs3qPHey3iM/lQyGRkX7Iu0gAnzNzBFUmtDVp
rWHwX4F8V2NvrraV4hbTFmin8W6v5sBvZrdEGVlKKqJNK5dyAWiSMAmUMmv4l8WeBTJ4h+3aFPPN
aQ2enXbabpWpyyTKhlaG2tzBakztH50++ODe0YaQSBRuqfR/FHgfx542tdGs9HS61bSLCPUrSWax
v4LIWZaBo2guHtlt5It8cDqkbsN8IYDdGSunNDmdlp/ktf8AMnX8Px/4c42z1m21TRdGv7NdfFxe
3kVpPo+p69rlhqUNxIsEiWa28s2XkEEk8zzZCKtuTt2lnj6b4R6Zb+PtLuH1qy8V+H9WgEMk2nze
IdZjNv5kYbyi0sq+YyMHQug2NtDL97AzPC3ib4WXE3h1/Ddl5dyLltP0tdLTU45REy22XVUgDfYN
iWQE5H2XYIAH27K2/BvxQ8D+H9F3eGrB4NJuNRS1D2em6i0OTGqxThvspC2XlIipdcWwRFCybQKm
1tF/X9f151Jrdaf0/wCvkdr/AMKp0X/n98Sf+FRqf/yRWRq3w1s7VdXk02TXLzUIbFZLa3ufF2pw
Ryy/vdqPKJmKKSAC21toJIU9D3Xnal/z6Wv/AIFN/wDG65jxk1nJovidfFFtpo8NtpRGp/a7tlh+
y4m83efL+7s3Z9ql7At9TwvQ/FzeIPE1jo1hZ6jefbIGnsr/AP4TPWEtb+N21Bbafeskn2eGT7FC
yMwfzRcMYt4hJezJ4nit7jU0NtrMkeiQ+dqT3XivV7FpBJcXUFvsSSc+UC1ruYyHhJAwz33pvG3w
m1yWzGqW1tdSS2FyZ28RR6gTb2qrdJIuoG5g/cDaL5US62kj7QIwRvpJviN8MF1DwrLqGj3cdzdN
cW1jdazo+sKEYrM00d3LPaYiYRpPIVuSpEeZBhG3FNPS39beX9X8rDbV9PL/AIP9eRR0m8a607Sr
+4t9cS3m1mDR5kk8Q65bzbpmjAd0kmBtQqyAgS5807FXHmITFrfiLTdL8feL9Cml1rT9M8P6fd38
mqP4l1e5IS3gsJ2/dLcr5jMt7KPLVtyeQjNkToB0nhbxJ8NFvPCdpp9ta6bqus3c1vpmlak19Z39
1NbxtcMZ7W4hWU+UiiRHnTCB4ihHmR7tbUdT8D6b4u8RtqWl2NvqNjp5/tbVr+O6FnHC6W6ukl68
Hkea6Jabk8zzWSOEsCqLi/dik57a/l/wG/8AhiY39f8Ah/6R5t8RvDK6hpen+GvFPgPUfEy6jo8O
oXenT+JdT1CJZlvLKKf/AEYSOZY7dbrzePncwMFC/Kx6vw94B8M+Ffgjb6h4T0LXdNjhtibXQtK1
bV4YY52kIbbbxyBwnmMzthN23cxGa6ZfF3g/4oeJk0YWtnq2rR6etwkhW6RYYnNvcqq3HkBEnH+i
T+WHEyDyZNqgq1V9a1vQ9LvLzwjPBfTWejaXFfSaRpunXdzbW0EeBCsc0Fmx88NGrxxJJ5+VVkXp
Q/dVmrPX83+S0+Q3rb+u39fM5nUEt7W60MWt7qVzY6tHcxxXt14k1qyjhkghkkkeYyT/ALoq0bIb
c/vMLI+f3bKMW18RRGxE97a+JrWa5066uNItk1fX5f7aljN48SwuJdqNJb2sdwIfnl2zFcZTLb95
4z+GTwSm5spUg/syTUJnaDVURRHEzyrI32cAagIo33Qt/pexWBXbmtL+2PAmrXVnHqOk3G+XSpb8
zeIrfVIktbYLMjS3Ml1AFtpdn2hVMxSXy94X5M0a6v8Arr/X3+Vp00V/6/r9PO/EeI/iB4W8M6Pf
6mdQ8T6ja2elXd3A41DX7WPU7y3F6ZrFJHnKwTR/YX3RvufknaMc7V7f6db+B9K1S3m8QXt/f6zN
pI+z6z4hbyvKadndrXf9o3iK3c+UF++QN5T95W7pN58M9U8QaJp1npmi3t9rOmm7svME8kF5DMty
295GhMbzSpJfMPMPmyK10wyplNHiDxR4H8M6TrWh6ho97Da6XcxNLbw2OqyyXFxPOWElo0dsXu5T
LMTJJbmRgznzCKUu0ev+f9L/ACsXdWutv+B/X9M4rxh470jwlp3i25a11u6Ol+GLDXNNWHxvqW3U
prkXxMaFplIiRbIvvxv2CRtnygHrPDMOl6/8TNS8NtPrkNrDDNJbs3iTXFlmEQtQzq7OIZF33Dqy
rIWTZEfm80iK1rHj7wDDJ4hsbvQxM66dBpd5bQaNqEv2u1VmRbe3VLQ/aRE106ukG8wmRhIE5ru9
F0TTLrVI/Ful6ZpNzd39qPK1S3vGkEkEixHMbBCNrrDBkr98RRZzsXFvlbutv+G/4P3+RL2SW/X+
vX+uzf8AhVOi/wDP74k/8KjU/wD5IrU8N6DbeHJry1tJb2WNtkha/v57yTJBHDzO7AcD5QcdTjk1
f87Uv+fS1/8AApv/AI3TdPadr67M8ccb7Y8LG5cY+buVH8qgDQooooAoa7odj4m0a90nU7ZbvT7y
JoJ4WJAdGGCMggg+4II6jmvkWa21D9n690zwr470xdV8BJqay6J4qhtIZbjTH8wSllDxvtYkfMAB
IAJGiYlRj7JrM8S+G9N8YaDe6NrFpHfabeRmKaCTOGHUEEchgQCGGCCAQQQDTOyhXVO8KivB7r9V
5/mef/DrQf8AhHfFV1B4SW5ufB1zGt7qGq61qF7qMt9dSRIImtLm4uJDIixJHvIUR/MgR2ZZFT1O
vm/wfa6/+y3qt3o+oS3Wv/De5lMmnXCqGmsWYksrdFBLHleFbJdcMXSvofTdStdYsYL2ynS5tZ1D
xyxnKsKwjWhKbpp6x/r7jjnUpe2nSpyvb5b9f8/M4vxX4jtNB+J3h5rmG/lB0fUB/oWnXF0eZrLH
ESN/dOfTjP3hnS/4WZpH/Pn4g/8ACb1H/wCMU7Uf+SoeH/8AsDal/wCj7GuprYDlP+FmaR/z5+IP
/Cb1H/4xR/wszSP+fPxB/wCE3qP/AMYrq6KAOU/4WZpH/Pn4g/8ACb1H/wCMUf8ACzNI/wCfPxB/
4Teo/wDxiurooA8p8b+IP7e3XWg6jrfh/WYtOvLK0vZvBuoXawSzeVtmMZjUPsMedpODnngYOZ4d
mt/D3hvR7SGS8j1XTTdyi6t/BOrLbzTTCQ+bJG5eR2LyF5GaYtIxdiyl8i98RotVk+KXhWbTLHWL
q0sxcXWrQ24nS3ubcWV0kS+ZvMLATOqm32eY7vBKDttznyrxN4M+KGkyW1jZxarqjXvhiQvFp9/d
W7wao9tqclzJDdmfy7f9/cW8aRyxyLhrcxhRakonFNf15/5fLqUlqk/62/qz36HpHgvUdL8A6D4e
0grrF00WqXd5I1r4U1G1gUzi5lZIYTG5RFaXCpuYgDrgcd7/AMLM0j/nz8Qf+E3qP/xiuY+FkerR
+EfDJ1r7Ub2TW9QlD3cUsDPG7XjRssMrNJBGUKlIXYtGm1CcrXqVXLchHKf8LM0j/nz8Qf8AhN6j
/wDGKP8AhZmkf8+fiD/wm9R/+MV1dFSM5T/hZmkf8+fiD/wm9R/+MVyPjPV7Txdrfh2fdqVtpulX
iX7I3gzU5L0zIcr5NxtCwhgWjcGNy8buuV3Zr1mvN/izpPiG+8RfD650O41P7Pb6tdf2ha2U4hie
FtKvlRpWxnAnMAGSVDMpKkhSDz7a/dqNLmujzy68I2V0PBk39ra5FqOjyRz6hqEXg3VElvJvtK3M
0kG0BbdppPNV9wl3RTyR9GYml4d0uw+Fvw5fSXvNZ1SS58SaPe5TwtqNlbwrHcWERWNJBJhmFuZG
+cmSaWRgNz4rE0uz8eqnhyZo/FUkDa3HO3l2t3bPLbRvp5mIjklc2aqIrnck3m/aQlwsWz7THjtf
Csd1L8NbrULr+2bb7f4t0aWLS9ajvFk06JLrT4UiDXSKzlhEJZGUFDNNNhnwXZwioRai9/8AO4ru
fvNf1b+l+HQz/Fnh248Za94kv9S1qe+hvjAml2998PNVlGnW8U9vMbVsSKJYZXgLSgKjSlkDMUij
jFLRfAslvo19outeJ9a17TH8ODwzY3UvgjVk1OztjBDFNi53kFpWiaR2EauzNHliIUFafxEOt6t4
z8SXOjnxJpo0yOGIIdO1K4tr5mu7Fpbjy0CRyxwxwbFhhk8yRZbvGN2X4uHTPH11pOnwWbeL9A13
RdH0lNQXWvt+qi9k8zTGvmd4wkNwIYrZ02wyebcPNelFXdumVNrl0fb8t/8AN+vW5Ulv/X9f8Meo
aVZ6JpPxP1nxXBDqFtBqMGx7W18G6ok8snlW8avPMysrqi2yhESOMLuY8ksWZa21jD8MPDvg2S81
uSPRRowivE8H6krSCxlt5W3LsP8ArDbkDB+QP/Hjnk7qx+J02keH7qXT9Y0yOLStO+2WVpdy3Cpb
xX2nSXaENLJNJcvbi/XGWcqAis7ZZ93x1F4muPg94esrC18SN4hXT2trb7MbhZ7fUJLRhZyXMgI3
IjkCR3LorkM/3dwqLas+/wCjdvzfn5aCu9Lf1t+X6EfgfwtZeC7XxNbzeLPG/iOPWtUt9UX+1fB8
kZt3jaNpMfZbGHe0rIdzN7HG7ez5Wk60/wAE/E3ibX9O8M+PfiKfElyWNhoXhuS1azUXF1ceZM17
PEsrn7X5QdMfu7eFdoCA1ofErTdTm0fxPP5PifTrzX9Uk0qxn0pb+QaVaRwyQm98m1ViX3SXE0Z2
gu7225wsSPH654a02fRPEHiaa7v764t764iuIW1CcsifulUpEvCog2j5VAycscszMc0+q6/8BhLR
2f8AVv66fkeJR+FYLzQ/FsVtHNo1v4sdpbrSrz4f6nOIVllnmm8/bMRLdb7jHnK4RfKUKhULiTVP
C1xr2pa1fazq3/CQz3F3HLpq6z8OtYnisoIxKiQtEJ1jlISZiX2puclyDtjWObXm8Y3Wl+NrS6h1
i4b+0JzpOqWej3cMts8pvFjWWOG7IvIUiaBY5Y/lRpYZJI1aJzHHrMmvXd5rctg/iXQxZaoqSxX2
i6lqyXaiWWQzOEeLzITN5aRpau+2IKZAEdlhpa2f/B/4f89ezHU3et3r8/8Ah/zVt0Ub/wAA3Vqu
sx+HPGGvaIupMVluZPBWry3c8Uk4nuEnmR4yxZt6RyRCJ4Unm2nzHEq+ieFtSsvDNzqV0h1D7RcR
WNnbx23grUoLe0tLeML5CRhD8u97l1+b5BMq4bZluTtbXxx9u8YQX1hqBvdQ3RRTW8Vww02S4uYo
oJInkke3uUigYSEJEvlG2l35M5J9H8N6G2l+NtXvGh1WHTNLtLXRNPjlmmmFyWVHluDkkyk7oI/N
k3FDBKdyh5CVfRL+uv8AXz27q27X9bf1c8Yh+GZvtW0bXtc8RahqHiezuZpLjVLXwDq0H2hJnsnk
dUaR/KnH2CJI5FYxpGzJ5TA5rb07RdTfRJ7LXtffXbu+1WPUtQ1B/h1q6yts2GP7OGmdbd4yi+Ww
DKmASjNuZs/TYdZi1CxtpLXxpY2l9rGLO6ni1OQaZZxxWAaOaNWnMlwZITGJ5X8l915NvKv5c3pX
wA03XdJ8P3tprF3ql5HbGC2SfW7WWC7mmjgRZ5X3yyBtzjl428tmV2TKsHa3sluv+G/4Ana77/8A
D/13Oo/4WZpH/Pn4g/8ACb1H/wCMVh694+jvrbWodGk1rSdVnsBFZ39x4T1G5S3mPm7ZGh8pN4Uk
HbuXOMZr0euU8cSJFoPip5INVukGkHMGhMy38g2zfLblSCJT0UgghiDkdah6oqO6PCLHwBcaZrWm
a5aeJL+HWrGzmiWZvAOsSRrct9sZbhFeUsDI97uuFZ287yIsGIqCOj8P6LBZ6Np9nq+s69f3NvZ6
lDLf2fg/VYJ5Lq7ZP9NVpBKUmRROvBxiYhQiqEPH21n4w/tyy1K5i8YXOiXem3N1c2WljUEeGQ/2
m81taGYQSQmIT26I8yA3JNsYlhFuQO80XT9d17SdFntv7YsJvK1PVpFjtZ08idVVLewAvFikaMNO
ZAW8sSNb/wAEbFANe69P6/r5aasPtqzu/wCvy+9Gd4S8Naf4d0/whDNeakZtB1yXWTFpvgnVLa0c
PY3FoIYYn8xoR/pHmkl33OH4G/5dPSbHTbD4lat4tlk1JH1K0MNxb2HgzVYXuZjHbJ507vvEmwWw
ESqqeWJH5YszFnhzT/FdzD8LZVudTfT9M16eK7eGyudPW9shpl2qTXVvcM9wpE5jTEjkO4WXHzJt
6jxdpOv3Wu3eo6HcatLFqmkrbtG07RJaJ5iktDExQJPseUhm+bO3cSI1QOu2opPVNNfKz0fa9hQ0
s9tF/wClfpueY6PYx/CPxBN4usLPxh45kj02DT10XTfClzDfORDaW5CTXMkUIt1Fp5whbBV5pmDt
v2nW0fVpNe1vUPGUGhan4J1PVIGVtP1vwNe3eoJKEWEC6nt7h4pYCkauIImTnYxYMGBq+LvDvjr+
xfDWoWkviM3R8MW66hbfaJHS2nivNNdy0MZ3TP5YvGeNW82dFeJXUspHd3EeqS/ASCxa7v7LWW0y
GOaRbaa4vUU7fMYwCVZy3l7iUWQyjkKXcDNS3beu/wCbX47/ADDorf1a39fI84s/BcsFxDFc6zNq
Gg2elSWGnaHc/DzVhaWMsgcySRqkqgoS4jCNkpAgiR13zPLb8J+CbDwx4w8O65/a+uyjTRK1xDD4
P1WIylxcgW8R5WGzQXK7bco+Pstt858pTVvWtS1xn0O+uNJ1+VreyuJ9Us9HsNQtlvoTA8du8R3v
5IZiu6yx9oRpBITiFmkw5rHx7HpjWuhy6pq0usaLei5+2abqFpJppdr+ZZLS4mlj2lJZYrVIGRJi
ghkDBI+J/T/g/wDBBXt6/wBf5G1eeEdIufGXg3xCt1rEdx4ZtPLh/wCKQ1fdcziG5hjebBEbRoLq
UhfL8wFnCyqsjq0vjDRrfxdrWq6ncrbz3ExhW0jvvhzq08Xlp5mBdqJF+1MolcIfkVN7nYxI25fg
pte1TxV4Wh1bT/EmlvbtfX91Mlvqi2WpJ5l+lvAsMhlS2SWOf7Q0c8oaLbZwqpKAQdZqC6j4R+D+
h2mpWWsal4jkaO6vUsYr65ggurjzXlLiANK9vE7PthQnaEhX5QQwlxjFadP+D+P9O2gXv7r7fgv6
+fS5yV14Vv76TX5L/wAU6pq89zFb2+kXV/4I1sXGlwwvGwQSQTxM5cxs8jp5byO43lo444V9S8F+
JPD/AIH8HaF4csrfxJLZ6PYQafC8nhq/DMkUaxqTttwM4UdAB6CvJ428T+E7jVlvbPxD4ohWFRDd
SWmq7jIXhW2eby3cTRtFGHdIYEaJ4ZVfJuTu7P4baPq+n/EbRYY7vxFqOi6d4X+yXt9rEd1Abq8J
s/Lnk85is7yRxOQECtbss4ky1wAukXzaf1ov6+/1J8/6/rt/wUd9/wALM0j/AJ8/EH/hN6j/APGK
0PD2t2+vT3lzbRXkUY2Ji+sprRyQCchJUViOeoGOozwa26qQf8hK6/3I/wD2apGW6KKKACiiigCv
qGn22q2M9neQpcWsyFJIpBlWU9Qa8Qtpp/2d/FQtrlrq68C6o37ubG82kx9ccnCjkYBYcjJQg+71
S1nRbHxDpdxp2o20d3ZXC7JIZBwR6+oIOCCOQQCOa48RQdS04O01s/0fkzkxFB1LTg7TWz/R+TKN
54f0rxJd2Orl5pZY7d47e5s76WJTFIUZseW4DBtiHPP3RS/8InY/899T/wDBrdf/AByvIpNL8UfA
Cae603f4i8FcvNbSyATW/wB0byQODknlQVIB3BeCPWfB/jjR/HWmi80i7WcAAywtxLCTn5XXseD7
HBwSOaVHEqpL2c1yzXT9V3QqOJVSXs5rlmun6ruiT/hE7H/nvqf/AINbr/45R/widj/z31P/AMGt
1/8AHK2qRmCKWYhVAySegrtOwxv+ETsf+e+p/wDg1uv/AI5R/wAInY/899T/APBrdf8AxytC81Sz
0+1mubq7gtreDmWaaRUSPOMbiTgdR19aS11exvb26s7e9t57u02i4t4pVaSHcMrvUHK5A4z1oAof
8InY/wDPfU//AAa3X/xyj/hE7H/nvqf/AINbr/45W1RQBgyeC9Nmkhd5NSZoW3oTqt18rbSuf9Z6
MR+NSf8ACJ2P/PfU/wDwa3X/AMcraooAxf8AhE7H/nvqf/g1uv8A45R/widj/wA99T/8Gt1/8cra
ooAxf+ETsf8Anvqf/g1uv/jlH/CJ2P8Az31P/wAGt1/8craooAxf+ETsf+e+p/8Ag1uv/jlVtQ8A
6RqsCQ3Z1GeJZop1VtVusCSORZI2/wBZ1DorfhXR0UAYv/CJ2P8Az31P/wAGt1/8co/4ROx/576n
/wCDW6/+OVtUUAYv/CJ2P/PfU/8Awa3X/wAco/4ROx/576n/AODW6/8AjlbVFAGL/wAInY/899T/
APBrdf8Axyo5vBWmXAAlbUJQOQH1O5OPzkreooAxV8I2CqAJtSAHAA1W6/8AjlH/AAidj/z31P8A
8Gt1/wDHK2qKAMX/AIROx/576n/4Nbr/AOOUf8InY/8APfU//Brdf/HK2qKAMX/hE7H/AJ76n/4N
br/45R/widj/AM99T/8ABrdf/HK2qKAMX/hE7H/nvqf/AINbr/45TR4O08SNIJtT3sApP9q3XQZx
/wAtPc/nW5RQBi/8InY/899T/wDBrdf/AByj/hE7H/nvqf8A4Nbr/wCOVtUUAYv/AAidj/z31P8A
8Gt1/wDHKP8AhE7H/nvqf/g1uv8A45W1RQBi/wDCJ2P/AD31P/wa3X/xyo/+EJ0vzvOzqHnf89P7
Tud3THXzPSt6igDF/wCETsf+e+p/+DW6/wDjlH/CJ2P/AD31P/wa3X/xytqigDF/4ROx/wCe+p/+
DW6/+OUf8InY/wDPfU//AAa3X/xytqigDF/4ROx/576n/wCDW6/+OUf8InY/899T/wDBrdf/AByt
qigDF/4ROx/576n/AODW6/8AjlXtO0qDS1kELTvvOWa4uJJm47ZdiQPYcc1cooAKKKKACiiigAoo
ooAK8n8Y/BR49SXX/A90nh3W4+fJiGyCbleMDhRhTldpVj1AyTXrFFYVqEK8eWa/zXoYVqEK8eWa
/wA16Hilj+0FceGZP7M8b+Hr7TtSjCjzrdFZZeSrPgkDbkcFCwPOOnN3xF8Zvh5408I6ro1/qZig
1Szms5re60+aUbZEKEOqqVYEHlc4IODXrjosilXUMp6hhkVg3Hw98LXU8k8/hrR5ppWLySSWETM7
E5JJK8knvXJ7HFxXLGopLzX6po5o08XSa5Kidu6/yep4XrvivwTHpusnTPEzjUdT1Wy1Q3EOjuzx
zQQwReYRLtSRituoBbdt+T5TsBFP4R+OPCPwpa8ji1vXdTtbiCKIw3JuZV8xGf8AfbZrmRI3dWXf
5KxqzBmI5VU+h9O8F+HtHuDPYaDpllPt2+Zb2ccbYPUZC9OK0/sdv/zwj/74FWo4x3vUiru+ifa3
f+rLsiFRxWl5xVlbZvT5v+te7KPhnxJY+LtDtdW02RpbO4BKllKsCCVZSPUEEfhxkVqV8031vdfs
t/EBb623SfDfXblYpYnkZzYykEkqo5JUAkHBLIu05IBr6QtLyDULWG5tZo7m2mQSRTQuGR1IyGUj
ggjnIr6HF4F4WNOpGXPCa0la2vVNXdmn0uzupybVpbrcmooorzTUKKKKACiiigAooooAKKKKACii
igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK4nwD8WNK8exuIre90y
5WOSfyNQtZIf3aTPE3zsoUyIy4ljBLRMQrgEjNfxF8a/DWhb44LhtWuQQBHZAMmSMj94flI6A7SS
M9OK5cRiqGFgp15qKffr6dyoxcnaKO+orN8O6w2vaLbX72Vxp7TAk210m2RMMRyPQ4yPUEGtKt4T
jUipx2eonpoFFFFWIKKKKACiiigAooooAKKKKACiiigDM8TeHbDxdoF/o2pwiexvYjFKhAyM9GGe
jA4IPYgHtXhfw18S6r8E/HQ+HXiqaW40S8b/AIkOrSMBGF5xGSQOpIXbnKvtABVw1fQ9cb8Uvhbp
HxV8OPp2oxrHdRhms75VzJbSEdR6qcDcvQgDoQCPZwGLpwUsLitaU9+8X0kvNde60Mpxb96O6Oyo
r5IuNc1jXtHn+F/xF1STSLmx2S/aZtKTVJNTjiuYZ0MKvG5acJDIkTKrMWkVgDLGob3j4d/ExvFV
9PpF/pkumalCsjoDKs0ckamMld4JzIiT2xk27ow0u1JJdjkcuMwdTBVXTnr1TWzXRp9n/wADcqMl
JJnf0UUVwFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR
RRQAV4X468eaj488TS+EdP0u+06wtZXe4l1HTmZNUaCZGUWsgZoZUzBcLLay+XNJEd8e1dsjeqah
470bSfFNp4fvrhrS/vI1e2eWNhBKzMwEQlxtEh2MVjJDMFYqG2Pt8z8fa9beOfiRH4P0F7ZtWjt2
jvtQQGSS2hJ/eRgjhB0DcgsWRDjPOFepOlRlVhTc2uiXW9vlr1eiNI05VHZevyOc8H6JqniCzt/C
ll9nFxDAkGva9HN9rlnRSRFE12yJJchEAjEjqrSbCSFGa9z8O+CtF8LW8Men6fDHJGMfaWQGZjgj
LPjJPJ9ucDAqTwr4WsfB+jxadYJiNfmeRsb5WPVmPc/yGB0FbFedhME4yeJxXvVX90V/LHyXfdvV
jlP7Mdgooor2DIKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPO/jV8I7X4seGTboYrTXLX95p
99ID+7bIJRivO1gMHrg4bBIwfAvBGit448QXXgjV3XwZ4kWe3k1N1ige5uWtpGmja2NxDMqY3llj
hMSwl2ngPzsF+wa8v+NfwnuPHVvZa1oFz/Zni/ScvZXanYZFzkxM3p1254BLdmNe7g8RSr01gsY7
RTvGX8kv1i9OZbfa3RlJNXceu/8AXf8A4Y9QorxDwT+0ZHaXy+HPiJZS+FfEMJ8prm5XbazkADfv
6JuO455jwAQ/IFe2xyLKiujB0YZDKcgiuDF4KvgpctaNr7PdNd09mVGSlsOooorhLCiiigAooooA
KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4/4q+Pf+FeeELrU4YorvUMoltZt
KoeUtIqMUQsGmZQ27yk+eTaET5mWuwri/i/eaHpXw916912eWxtvsM1oLyzjRruPzl2Yg3qV3ltu
NwK5UFuAaqMZVJKEFdvYqMXKSile5853HxR8SeFLHWLmPVW1a416+u7PS9Oa/OookxaDy2j3JIn7
hjIpCS7WmkkTy1WJVj90+BXwn/4Vr4be41J2vPFOqt9q1O8mYO+9ufL3ZOQpJycncxZs4IA4H9nn
4b6h4l1WH4l+LGuJr14Vi0a2uZZGaCAKyCRy/LkqcqxJ3b2kO5nDD6Kr2cXOOEpLA0nr9t92ui8l
+L1Oyq1Qh9Xg9d5Pz7ei/MKKKK8Q4QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii
gDA8XeA/D/j2zW11/SrfUo0DCNpFIkj3Y3bHGGXOBnaRnArxKTwP8Q/gDMbjwddS+L/CCYL6JdBn
uIt0hLCNVHXnO5OMsxaM4yfoyivVwuZVsNH2UrTpveMtV8uz80Zygpa9Tzr4Y/HTw58TlFrbytpm
uIMS6VeELKGAO4Rn/loBtbpyAAWVc4r0WvNPih8B9A+I7nUkD6N4ljIkh1ay+SQyKuEMmPvgEJzw
w2ABgK4TQPi94r+EerW/hz4m2UtxprN5Vp4lhUuHUFgpcqDvJCg9pAOWDbs111MHh8ZB1sA7NK7h
J6ru4v7SX3+pHtHT/ibdz6Gorwv4pfH/AFL4f+MLCaxsJte8JyWQdodO0G9u7m7uGeMJ9muYS6Mh
E8K8xbTJIiiTHnNbex6H4i0rxNatc6RqVnqduj+W8lncJMqtgNtJUkA4ZTj0I9a+fWqub+ho0UUU
AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVHcXEVnbyTzypDBEpeSSRgqooGSST0
AHegBl9fW+m2c93dzx21rAjSSzSsFRFAyWJPQAV816Hb3/7VXjr+2NQjFr8ONBuHitbPOHvJcKf3
gByCQVY54VSEXJLtUvjPWNR/aW8cXHg3w5ewx+BtJkjfVNUgZWNw2SR5ZI5GVYLgbSVLZYba+h9C
0LT/AAzo9rpel2kdlp9qnlwwRDAUf1JOSSeSSSck176/4S6d3/Gkv/AE/wD25r7l6npf7nC//Lx/
+Sr/ADf4Fu3t4rO3iggiSCCJQkcUahVRQMAADgADtUlFFeAeaFFFFABRRRQAUUUUAFFFFABRRRQA
UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVneIPDum+KdLm07VrKK+s5gQ0cq5xkEZU9VbBOGBBHY1
o0Umk1ZkyipJxkro+VvHXwk1H4XxNthn8T+CGSRPM+zxT3+jbvmaeAujLG4YCTeF2Fo13jhTXR/B
nQf7e1jTr/RbsWmh6ddTXguNNkeD7Q0scYeC8t45oot658qJXguFjgt02TByCv0NXj+sfBG48OeK
4fE3gO/bRJvMDXmkoFFtcRgD5FXhVzzweBuyu0qM8fLPDtOnrHt29P8AI8d0quAX7hOVPrHqv8Pl
5fduek654s0zw3dafBqM0lu1/MIIJBbyPH5hIVVZ1UqhJYAbyMk8Zq/p+oWurWUF5ZXMN5aToJIr
i3kDxyKejKw4I9xXltxa6d428RW2oT3Nx4c8Y2UPl2q3ClrdbjZLHFN5RI3uiXVwFQkKfPJZZCkb
J5/4w8N+PfgzH4g1zwjaXmuyT3fmR2z30832iJYIy7lUgmdrgw2hhWSYSFppogCqAR1006kavw/1
5ep6dCvSxMVOjK629PXtY+mqKrab9qGnWovmie98pfPaBSsZkwNxUEkgZzgE1ZrU2TurhRRRSGFF
FFABRRRQAUUUUAFFFFABRRTJZFhjeRzhFBYn2FJuyuwH0Vz/AIZ8eaF4s8E2fi2w1CP+wLm1+2C7
uD5IijAJfzQ2DGyYYOrYKFWDYINeC+N/2lPEnxA8RXHg74L6YNYv422XXiKRQ1tbY8wEpuHl4yoK
yOSrYIVGyDWdaoqGk9+3U5auKp0YqTd77Jat+h638UvjZ4a+FNoRqd19o1V498Gl253TyAnAJ7Iv
X5mxna2MkYryy2+HnxD/AGgJlvPHl5N4T8Jli0Xh+0HlzSAbCpdSDjkA5lywKHaihga7j4R/s+aZ
8Pbj+3NVuG1/xdMzSz6lOSVSRi24xg85IblmJJOTxnFetV9B9ao4JWwavL+dr/0ldPV6+h7XtqdB
Woav+Z/oun5mN4T8IaP4H0aLStEsIdPso+SkS4LtgAu56sxAGWPPArZoorxpSlOTlJ3bOBycnd7h
RRRUiCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDE
8ReD9N8URgXcTLKvCzxHa45HHoencHrXPL4J8Q6OGGkeImaMnKw3YO1Rn/gQ7nOAM13lFc88PTm+
a1n3Wh51bL8PWn7Rq0u6bT/D9TyTxh8TPHHgWwhupPBMniDexRodP35Qbc+YzIJQAMYwVGd3UbSD
ztj+2d4Ii1qXS/EFrqvhq4jj8zdeWxkXBxhSI8urEEnlcYH3uQK99rO1zw5pPiezFprGmWerWobc
IL63SZA2CM7WBGcEj8TXpUJUIUlTqwcn/NfX7rWHSw9ajtVcl/eS/NWMTwb8V/B/xAjjbw/4j0/U
pHzi3jmCzjBb70TYdfusRlRkDI45rlfiF8Xrnwb8UPD2gpdaMmm3VndXN6t5KscsCx288yzSyGVT
BB+4I8wQzKSWDGIqvmYvi/8AY1+GXiwyvFpdzoE8shleTSbgoDk52iOQPGq+yqMdq5O4/Z2+K/g9
jJ4S+KcmrQyIYpdP8RRs8Hl4UkBX85CSVxnapAON3Jzq6OHqfw6ln2kv1V/yOpTnH4o39DsdP/aq
8Ox6pJpmv6Tqmg3sSfOmxLqRpCBIqJaRMb05t2S4LNbKscbEStG6SIvtSsGUEHIPIIr4c8YeFvic
uuXep+NfhveeJbtZCg1Dw/d+b58JVoJQkDLcxwCaNkVpIIYJyiDc/GR7H4Q/bY8Aa9JbW2rrqHhi
7kRd/wBtg8yASHaCoePJ25Jw7KowpJ28CiWBrW5oLmXk7/kHto7PT8D6Born/CvxA8M+OI5G8P6/
p2seUFMqWdykjxbs7d6g5XO1sZA+6fSugrilFxdpKzNU09UFFFFSMKKKgvr620uxuL29uIrSzt42
mmuJ3CRxIoJZ2Y8BQASSeABQBQ8TapqGkaTLcaZpZ1e7XlbbzvKBABJy2GPbAAU5JXoMsPlT4weP
LXw5qlr4n1zxBHqF3HdLNpbW8cdvdQWoupvNthA3mSB4zE8MkoaCOeN9jlzEFfoviN8f7/4xXF/4
A+E+hjxM1yGtNT1m/tEk06KFgA2RKCjowEqnzFw235BJuFdP8DP2UtF+GP2fV9feHxP4rWOMLdTx
l4bPYsYRYQ+eUMYCyYDbQAAoyK4pVXVbjR18+n/BPNliqlZunhNusuny7v8AA8k+Hf7P/iX4zW5f
W7O4+G3w2kuDeQ+GbN28+8lKqjTSmT5mkJhRzNMpLks4XMrOfrjwf4J0L4f6HFpHh3S7fSdOjORD
brjc2AN7seXYgDLMSTgZNbdFbU6Sg+Zu8nu3ubUMLCh728nu3v8A8BeSCiiitzsCiiigAooooAKK
KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo
oAKKKKACsLxR4F8OeNo4k1/QtO1kQhhEb61SVot2N2wsMqTgcjHQelbtFVGTi7xdmLfc8G8R/sV/
DXXb17m1g1LQHclmTTLvCbixJIWVXC9cbVwoAGAKxZf2H9C0tPtXhrxp4n0TW4yDb37XEbiLnDcR
pG3K7hw469xwfpOiuxY7ExVud/n+Zl7Gm+h80N+yr4/ZSB8efE49/wDSf/kunQ/s2fFPTFMVn8c9
YniY7i13DK7Z6YBadjjgd/XivpWiuDEf7VJTq7rTTT8rGE8HRqO7vf1f+Z803HwN+OGlQm60j4xm
81GPHlQ6hbkQNk4O7IlHQkjKHkDp1GbL+zn8XfihfWlj8VPiBY3vhi3cTm10ZQskzggBSBbxKBtL
fMdxHZecj6oork+q03o27druxk8BSejcrduZ2f4mH4N8D6F8PdDh0fw7pkGl6fHyIoQSWbAG52OW
dsAZZiScda3KKK60lFWR6EYqK5YqyCiiimUFFFFABRRRQAUUUUAFFFFABRRRQB//2Q==</Data></Enclosure></Binary></metadata>