-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcontinue_train_model.py
37 lines (28 loc) · 1.29 KB
/
continue_train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from tensorflow import keras
from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D, Dropout, SpatialDropout2D, AveragePooling2D
import numpy as np
import pickle
x_val=(pickle.load(open('x_val.bin','rb')))
y_val=pickle.load(open('y_val.bin','rb'))
print('\n \nTraining: \n \n')
checkpoint = keras.callbacks.ModelCheckpoint('ckpt.hdf5', monitor='val_loss', verbose=1, save_best_only=True, mode='min')
stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=15)
model = keras.models.load_model("AWS")
from keras.preprocessing.image import ImageDataGenerator
# Generator Object with transformation settings
train_datagen = ImageDataGenerator(
shear_range=0.1, height_shift_range=0.2,
zoom_range=0.2, horizontal_flip=True,
vertical_flip=True, width_shift_range=0.2)
# Vectorize Images in Training Directory
batch=18
train_generator = train_datagen.flow_from_directory(
'train', target_size=(256, 256),
batch_size=batch, class_mode='categorical')
#Similarly generate validation set too called validation_generator
# Train Model
model.fit(
train_generator, steps_per_epoch=1995//batch,
epochs=100, validation_data=(x_val,y_val), callbacks=[checkpoint, stop])
model.save("AWS")
print('\n\nSaving Model Successful')