-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataloader.py
283 lines (244 loc) · 9.27 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import gzip
import os
import sys
import io
import re
import random
import csv
import numpy as np
import torch
csv.field_size_limit(sys.maxsize)
def clean_str(string, TREC=False):
"""
Tokenization/string cleaning for all datasets except for SST.
Every dataset is lower cased except for TREC
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip() if TREC else string.strip().lower()
def read_corpus(path, csvf=False , clean=True, MR=True, encoding='utf8', shuffle=False, lower=True):
data = []
labels = []
if not csvf:
with open(path, encoding=encoding) as fin:
for line in fin:
if MR:
label, sep, text = line.partition(' ')
label = int(label)
else:
label, sep, text = line.partition(',')
label = int(label) - 1
if clean:
text = clean_str(text.strip()) if clean else text.strip()
if lower:
text = text.lower()
labels.append(label)
data.append(text.split())
else:
with open(path, "r") as f:
reader = csv.reader(f, delimiter=",")
for line in reader:
text = line[0]
label = int(line[1])
if clean:
text = clean_str(text.strip()) if clean else text.strip()
if lower:
text = text.lower()
labels.append(label)
data.append(text.split())
if shuffle:
perm = list(range(len(data)))
random.shuffle(perm)
data = [data[i] for i in perm]
labels = [labels[i] for i in perm]
return data, labels
def read_MR(path, seed=1234):
file_path = os.path.join(path, "rt-polarity.all")
data, labels = read_corpus(file_path, encoding='latin-1')
random.seed(seed)
perm = list(range(len(data)))
random.shuffle(perm)
data = [ data[i] for i in perm ]
labels = [ labels[i] for i in perm ]
return data, labels
def read_SUBJ(path, seed=1234):
file_path = os.path.join(path, "subj.all")
data, labels = read_corpus(file_path, encoding='latin-1')
random.seed(seed)
perm = list(range(len(data)))
random.shuffle(perm)
data = [ data[i] for i in perm ]
labels = [ labels[i] for i in perm ]
return data, labels
def read_CR(path, seed=1234):
file_path = os.path.join(path, "custrev.all")
data, labels = read_corpus(file_path)
random.seed(seed)
perm = list(range(len(data)))
random.shuffle(perm)
data = [ data[i] for i in perm ]
labels = [ labels[i] for i in perm ]
return data, labels
def read_MPQA(path, seed=1234):
file_path = os.path.join(path, "mpqa.all")
data, labels = read_corpus(file_path)
random.seed(seed)
perm = list(range(len(data)))
random.shuffle(perm)
data = [ data[i] for i in perm ]
labels = [ labels[i] for i in perm ]
return data, labels
def read_TREC(path, seed=1234):
train_path = os.path.join(path, "TREC.train.all")
test_path = os.path.join(path, "TREC.test.all")
train_x, train_y = read_corpus(train_path, TREC=True, encoding='latin-1')
test_x, test_y = read_corpus(test_path, TREC=True, encoding='latin-1')
random.seed(seed)
perm = list(range(len(train_x)))
random.shuffle(perm)
train_x = [ train_x[i] for i in perm ]
train_y = [ train_y[i] for i in perm ]
return train_x, train_y, test_x, test_y
def read_SST(path, seed=1234):
train_path = os.path.join(path, "stsa.binary.phrases.train")
valid_path = os.path.join(path, "stsa.binary.dev")
test_path = os.path.join(path, "stsa.binary.test")
train_x, train_y = read_corpus(train_path, False)
valid_x, valid_y = read_corpus(valid_path, False)
test_x, test_y = read_corpus(test_path, False)
random.seed(seed)
perm = list(range(len(train_x)))
random.shuffle(perm)
train_x = [ train_x[i] for i in perm ]
train_y = [ train_y[i] for i in perm ]
return train_x, train_y, valid_x, valid_y, test_x, test_y
def cv_split(data, labels, nfold, test_id):
assert (nfold > 1) and (test_id >= 0) and (test_id < nfold)
lst_x = [ x for i, x in enumerate(data) if i%nfold != test_id ]
lst_y = [ y for i, y in enumerate(labels) if i%nfold != test_id ]
test_x = [ x for i, x in enumerate(data) if i%nfold == test_id ]
test_y = [ y for i, y in enumerate(labels) if i%nfold == test_id ]
perm = list(range(len(lst_x)))
random.shuffle(perm)
M = int(len(lst_x)*0.9)
train_x = [ lst_x[i] for i in perm[:M] ]
train_y = [ lst_y[i] for i in perm[:M] ]
valid_x = [ lst_x[i] for i in perm[M:] ]
valid_y = [ lst_y[i] for i in perm[M:] ]
return train_x, train_y, valid_x, valid_y, test_x, test_y
def cv_split2(data, labels, nfold, valid_id):
assert (nfold > 1) and (valid_id >= 0) and (valid_id < nfold)
train_x = [ x for i, x in enumerate(data) if i%nfold != valid_id ]
train_y = [ y for i, y in enumerate(labels) if i%nfold != valid_id ]
valid_x = [ x for i, x in enumerate(data) if i%nfold == valid_id ]
valid_y = [ y for i, y in enumerate(labels) if i%nfold == valid_id ]
return train_x, train_y, valid_x, valid_y
def pad(sequences, pad_token='<pad>', pad_left=True):
''' input sequences is a list of text sequence [[str]]
pad each text sequence to the length of the longest
'''
max_len = max(5,max(len(seq) for seq in sequences))
if pad_left:
return [ [pad_token]*(max_len-len(seq)) + seq for seq in sequences ]
return [ seq + [pad_token]*(max_len-len(seq)) for seq in sequences ]
def create_one_batch(x, y, map2id, oov='<oov>'):
oov_id = map2id[oov]
x = pad(x)
length = len(x[0])
batch_size = len(x)
x = [ map2id.get(w, oov_id) for seq in x for w in seq ]
x = torch.LongTensor(x)
assert x.size(0) == length*batch_size
return x.view(batch_size, length).t().contiguous().cuda(), torch.LongTensor(y).cuda()
def create_one_batch_x(x, map2id, oov='<oov>'):
oov_id = map2id[oov]
x = pad(x)
length = len(x[0])
batch_size = len(x)
x = [ map2id.get(w, oov_id) for seq in x for w in seq ]
x = torch.LongTensor(x)
assert x.size(0) == length*batch_size
return x.view(batch_size, length).t().contiguous().cuda()
# shuffle training examples and create mini-batches
def create_batches(x, y, batch_size, map2id, perm=None, sort=False):
lst = perm or range(len(x))
# sort sequences based on their length; necessary for SST
if sort:
lst = sorted(lst, key=lambda i: len(x[i]))
x = [ x[i] for i in lst ]
y = [ y[i] for i in lst ]
sum_len = 0.
for ii in x:
sum_len += len(ii)
batches_x = [ ]
batches_y = [ ]
size = batch_size
nbatch = (len(x)-1) // size + 1
for i in range(nbatch):
bx, by = create_one_batch(x[i*size:(i+1)*size], y[i*size:(i+1)*size], map2id)
batches_x.append(bx)
batches_y.append(by)
if sort:
perm = list(range(nbatch))
random.shuffle(perm)
batches_x = [ batches_x[i] for i in perm ]
batches_y = [ batches_y[i] for i in perm ]
sys.stdout.write("{} batches, avg sent len: {:.1f}\n".format(
nbatch, sum_len/len(x)
))
return batches_x, batches_y
# shuffle training examples and create mini-batches
def create_batches_x(x, batch_size, map2id, perm=None, sort=False):
lst = perm or range(len(x))
# sort sequences based on their length; necessary for SST
if sort:
lst = sorted(lst, key=lambda i: len(x[i]))
x = [ x[i] for i in lst ]
sum_len = 0.0
batches_x = [ ]
size = batch_size
nbatch = (len(x)-1) // size + 1
for i in range(nbatch):
bx = create_one_batch_x(x[i*size:(i+1)*size], map2id)
sum_len += len(bx)
batches_x.append(bx)
if sort:
perm = list(range(nbatch))
random.shuffle(perm)
batches_x = [ batches_x[i] for i in perm ]
# sys.stdout.write("{} batches, avg len: {:.1f}\n".format(
# nbatch, sum_len/nbatch
# ))
return batches_x
def load_embedding_npz(path):
data = np.load(path)
return [ w.decode('utf8') for w in data['words'] ], data['vals']
def load_embedding_txt(path):
file_open = gzip.open if path.endswith(".gz") else open
words = [ ]
vals = [ ]
with file_open(path, encoding='utf-8') as fin:
fin.readline()
for line in fin:
line = line.rstrip()
if line:
parts = line.split(' ')
words.append(parts[0])
vals += [ float(x) for x in parts[1:] ]
return words, np.asarray(vals).reshape(len(words),-1)
def load_embedding(path):
if path.endswith(".npz"):
return load_embedding_npz(path)
else:
return load_embedding_txt(path)