-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfingerprint_sensor_display.py
358 lines (301 loc) · 11.9 KB
/
fingerprint_sensor_display.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import time
import hashlib
import tempfile
from pyfingerprint.pyfingerprint import PyFingerprint
import RPi.GPIO as GPIO
import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image, ImageDraw, ImageFont
from collections import OrderedDict
import threading
import board
import digitalio
import busio
import adafruit_rgb_display.st7735 as st7735
# GPIO setup
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
BUTTON_PINS = [5, 6, 13, 19] # Example GPIO pins for buttons
for pin in BUTTON_PINS:
GPIO.setup(pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
# TFT setup
cs_pin = digitalio.DigitalInOut(board.CE0) # Chip select of the display (BCM 8, Physical 24)
dc_pin = digitalio.DigitalInOut(board.D24) # Data/command pin (BCM 24, Physical 18)
reset_pin = digitalio.DigitalInOut(board.D25) # Reset pin (BCM 25, Physical 22)
led_pin = digitalio.DigitalInOut(board.D18) # LED pin (BCM 18, Physical 12, optional)
# Set the LED pin to output and turn it on
led_pin.direction = digitalio.Direction.OUTPUT
led_pin.value = True
# Config for display baudrate (default max is 24mhz)
BAUDRATE = 24000000
# Setup SPI bus using hardware SPI:
spi = busio.SPI(board.SCLK, MOSI=board.MOSI, MISO=board.MISO)
# Create the ST7735 display:
disp = st7735.ST7735R(spi, cs=cs_pin, dc=dc_pin, rst=reset_pin, baudrate=BAUDRATE)
# Create blank image for drawing.
# Make sure to create image with mode 'RGB' for full color.
width = disp.width
height = disp.height
image = Image.new("RGB", (width, height))
draw = ImageDraw.Draw(image)
# Font setup
font = ImageFont.load_default()
def tft_init():
disp.fill(0) # Clear display
def tft_clear():
draw.rectangle((0, 0, width, height), outline=0, fill=0)
disp.image(image)
def tft_message(message, line):
tft_clear()
y = 10 if line == 1 else 30
draw.text((10, y), message, font=font, fill="WHITE")
disp.image(image)
def tft_message_five_lines(message1, message2, message3, message4, message5):
tft_clear()
max_width = width - 20 # Adjust for margin
y = 10
for message in [message1, message2, message3, message4, message5]:
lines = [message[i:i+20] for i in range(0, len(message), 20)]
for line in lines:
draw.text((10, y), line, font=font, fill="WHITE")
y += 20
disp.image(image)
def tft_message_four_lines(message1, message2, message3, message4):
tft_clear()
max_width = width - 20 # Adjust for margin
y = 10
for message in [message1, message2, message3, message4]:
lines = [message[i:i+20] for i in range(0, len(message), 20)]
for line in lines:
draw.text((10, y), line, font=font, fill="WHITE")
y += 20
disp.image(image)
FINGERPRINT_CHARBUFFER1 = 0x01
FINGERPRINT_CHARBUFFER2 = 0x02
is_anti_spoof_enabled = False
stop_operation = False
def initialize_sensor():
try:
f = PyFingerprint('/dev/ttyUSB0', 57600, 0xFFFFFFFF, 0x00000000)
if not f.verifyPassword():
raise ValueError('The given fingerprint sensor password is wrong!')
return f
except Exception as e:
tft_message_four_lines('Sensor Init Failed!', str(e), '', '')
print(f'Sensor Init Failed: {e}')
exit(1)
def delete_finger():
global stop_operation
try:
f = initialize_sensor()
tft_message_four_lines('Used templates:', str(f.getTemplateCount()) + '/' + str(f.getStorageCapacity()), '', '')
print(f'Used templates: {f.getTemplateCount()}/{f.getStorageCapacity()}')
time.sleep(2)
tft_message('Enter template pos:', 1)
positionNumber = int(input('Please enter the template position you want to delete: '))
if stop_operation:
return
if f.deleteTemplate(positionNumber):
tft_message('Template deleted!', 1)
print('Template deleted!')
else:
tft_message('Failed to delete!', 1)
print('Failed to delete!')
except Exception as e:
tft_message_four_lines('Delete Failed!', str(e), '', '')
print(f'Delete Failed: {e}')
exit(1)
def enroll_finger():
global stop_operation
try:
f = initialize_sensor()
tft_message_four_lines('Used templates:', str(f.getTemplateCount()) + '/' + str(f.getStorageCapacity()), '', '')
print(f'Used templates: {f.getTemplateCount()}/{f.getStorageCapacity()}')
time.sleep(2)
tft_message('Waiting for finger...', 1)
# Capture the first fingerprint image
while not f.readImage():
if stop_operation:
return
f.convertImage(FINGERPRINT_CHARBUFFER1)
result = f.searchTemplate()
positionNumber = result[0]
if positionNumber >= 0:
tft_message_four_lines('Template exists', 'Pos #' + str(positionNumber), '', '')
print(f'Template exists at position #{positionNumber}')
return
tft_message('Remove finger...', 1)
time.sleep(2)
tft_message_four_lines('Waiting for same', 'finger again...', '', '')
# Add a small delay to allow the user to reposition their finger
time.sleep(3)
# Capture the second fingerprint image
while not f.readImage():
if stop_operation:
return
f.convertImage(FINGERPRINT_CHARBUFFER2)
if f.compareCharacteristics() == 0:
raise Exception('Fingers do not match')
f.createTemplate()
positionNumber = f.storeTemplate()
tft_message_four_lines('Finger enrolled!', 'Pos #' + str(positionNumber), '', '')
print(f'Finger enrolled at position #{positionNumber}')
except Exception as e:
tft_message_four_lines('Enroll Failed!', str(e), '', '')
print(f'Enroll Failed: {e}')
def search_finger():
global stop_operation
f = initialize_sensor()
while not f.readImage():
if stop_operation:
return
timestamp = time.strftime("%Y%m%d%H%M%S")
imageDestination = '/home/sanya22/Searched_Fingerprint_images/fingerprint_' + timestamp + '.bmp'
f.downloadImage(imageDestination)
time.sleep(2)
fingerprint_data = Image.open(imageDestination)
is_fake = spoof_detection_algorithm(fingerprint_data, is_anti_spoof_enabled)
if is_fake:
print("Spoof fingerprint detected")
tft_message('Spoof Detected!', 1)
else:
normal_fingerprint_search()
time.sleep(2)
def spoof_detection_algorithm(fingerprint_data, is_anti_spoof_enabled):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Replace with the path to your model weights
weights_path = "/home/sanya22/myproject/Resnet18_scratch_CrossMatch.pt"
# Load the model
model = load_model(weights_path, device)
# Preprocess the fingerprint image
image_tensor = preprocess_image(fingerprint_data)
# Predict the class (0: Fake, 1: Live)
preds = predict(model, image_tensor, device)
class_names = ["Fake", "Live"]
if preds[0] == 0:
return True # Fingerprint is detected as fake
else:
return False # Fingerprint is detected as live
# Define the model architecture
def load_model(weights_path, device):
model = models.resnet18()
num_ftrs = model.fc.in_features
model.fc = nn.Sequential(
nn.Linear(num_ftrs, 256),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(256, 2),
nn.LogSoftmax(dim=1)
)
model = model.to(device)
state_dict = torch.load(weights_path, map_location=device)
# Create a new state dictionary without the 'module.' prefix
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k.startswith('module.'):
new_state_dict[k[7:]] = v # Strip the 'module.' prefix
else:
new_state_dict[k] = v
# Load the new state dictionary into your model
model.load_state_dict(new_state_dict)
model.eval()
return model
# Function to preprocess the image
def preprocess_image(fingerprint_data):
preprocess = transforms.Compose([
transforms.Resize((280, 280)), # Resize to (280, 280)
transforms.TenCrop(224),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image = fingerprint_data.convert("RGB")
image = preprocess(image)
image = image.unsqueeze(0)
return image
# Function to predict the class of the image
def predict(model, image_tensor, device):
with torch.no_grad():
bs, ncrops, c, h, w = image_tensor.size()
image_tensor = image_tensor.view(-1, c, h, w).to(device)
outputs = model(image_tensor)
outputs = outputs.view(bs, ncrops, -1).mean(1)
_, preds = torch.max(outputs, 1)
return preds.cpu().numpy()
def spoof_guard():
global is_anti_spoof_enabled
is_anti_spoof_enabled = not is_anti_spoof_enabled
tft_clear()
if is_anti_spoof_enabled:
tft_message('Anti-Spoof Enabled', 1)
else:
tft_message('Anti-Spoof Disabled', 1)
time.sleep(2)
def normal_fingerprint_search():
global stop_operation
try:
f = initialize_sensor()
f.convertImage(FINGERPRINT_CHARBUFFER1)
result = f.searchTemplate()
positionNumber = result[0]
if positionNumber >= 0:
tft_message_four_lines('Template exists', 'Pos #' + str(positionNumber), '', '')
print(f'Template exists at position #{positionNumber}')
elif positionNumber == -1:
tft_message('No match found', 1)
print('No match found')
except Exception as e:
tft_message_four_lines('Search Failed!', str(e), '', '')
print(f'Search Failed: {e}')
def main_menu():
tft_message('Fingerprint System', 1)
time.sleep(2)
tft_message_five_lines('1: Enroll', '2: Delete', '3: Anti Spoof', '4: Back', 'Waiting for finger..')
def main():
global stop_operation
tft_init()
main_menu()
search_thread = None
while True:
if GPIO.input(BUTTON_PINS[0]) == GPIO.LOW:
stop_operation = True
if search_thread and search_thread.is_alive():
search_thread.join()
stop_operation = False
tft_message('Enrolling Finger...', 1)
enroll_finger()
main_menu()
elif GPIO.input(BUTTON_PINS[1]) == GPIO.LOW:
stop_operation = True
if search_thread and search_thread.is_alive():
search_thread.join()
stop_operation = False
tft_message('Deleting Finger...', 1)
delete_finger()
main_menu()
elif GPIO.input(BUTTON_PINS[2]) == GPIO.LOW:
stop_operation = True
if search_thread and search_thread.is_alive():
search_thread.join()
stop_operation = False
tft_message('Toggling Spoof Guard...', 1)
spoof_guard()
main_menu()
elif GPIO.input(BUTTON_PINS[3]) == GPIO.LOW:
stop_operation = True
if search_thread and search_thread.is_alive():
search_thread.join()
tft_message('Returning to Menu...', 1)
time.sleep(2)
main_menu()
else:
if search_thread is None or not search_thread.is_alive():
search_thread = threading.Thread(target=search_finger)
search_thread.start()
time.sleep(0.2)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
GPIO.cleanup()