-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssd-11.6.1.py
341 lines (283 loc) · 11.8 KB
/
ssd-11.6.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
"""SSD class to build, train, eval an SSD network
1) ResNet50 (v2) backbone.
Train with 6 layers of feature maps.
Pls adjust batch size depending on your GPU memory.
For 1060 with 6GB, -b=1. For V100 with 32GB, -b=4
python3 ssd-11.6.1.py -t -b=4
2) ResNet50 (v2) backbone.
Train from a previously saved model:
python3 ssd-11.6.1.py --restore-weights=saved_models/ResNet56v2_4-layer_weights-200.h5 -t -b=4
2) ResNet50 (v2) backbone.
Evaluate:
python3 ssd-11.6.1.py -e --restore-weights=saved_models/ResNet56v2_4-layer_weights-200.h5 \
--image-file=dataset/drinks/0010000.jpg
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import backend as K
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.losses import Huber
import layer_utils
import label_utils
import config
import os
import skimage
import numpy as np
import argparse
from skimage.io import imread
from data_generator import DataGenerator
from label_utils import build_label_dictionary
from boxes import show_boxes
from model import build_ssd
from loss import focal_loss_categorical, smooth_l1_loss, l1_loss
from model_utils import lr_scheduler, ssd_parser
from common_utils import print_log
class SSD:
"""Made of an ssd network model and a dataset generator.
SSD defines functions to train and validate
an ssd network model.
Arguments:
args: User-defined configurations
Attributes:
ssd (model): SSD network model
train_generator: Multi-threaded data generator for training
"""
def __init__(self, args):
"""Copy user-defined configs.
Build backbone and ssd network models.
"""
self.args = args
self.ssd = None
self.train_generator = None
self.build_model()
def build_model(self):
"""Build backbone and SSD models."""
# store in a dictionary the list of image files and labels
self.build_dictionary()
# input shape is (480, 640, 3) by default
self.input_shape = (self.args.height,
self.args.width,
self.args.channels)
# build the backbone network (eg ResNet50)
# the number of feature layers is equal to n_layers
# feature layers are inputs to SSD network heads
# for class and offsets predictions
self.backbone = self.args.backbone(self.input_shape,
n_layers=self.args.layers)
# using the backbone, build ssd network
# outputs of ssd are class and offsets predictions
anchors, features, ssd = build_ssd(self.input_shape,
self.backbone,
n_layers=self.args.layers,
n_classes=self.n_classes)
# n_anchors = num of anchors per feature point (eg 4)
self.n_anchors = anchors
# feature_shapes is a list of feature map shapes
# per output layer - used for computing anchor boxes sizes
self.feature_shapes = features
# ssd network model
self.ssd = ssd
def build_dictionary(self):
"""Read input image filenames and obj detection labels
from a csv file and store in a dictionary.
"""
# train dataset path
path = os.path.join(self.args.data_path,
self.args.train_labels)
# build dictionary:
# key=image filaname, value=box coords + class label
# self.classes is a list of class labels
self.dictionary, self.classes = build_label_dictionary(path)
self.n_classes = len(self.classes)
self.keys = np.array(list(self.dictionary.keys()))
def build_generator(self):
"""Build a multi-thread train data generator."""
self.train_generator = \
DataGenerator(args=self.args,
dictionary=self.dictionary,
n_classes=self.n_classes,
feature_shapes=self.feature_shapes,
n_anchors=self.n_anchors,
shuffle=True)
def train(self):
"""Train an ssd network."""
# build the train data generator
if self.train_generator is None:
self.build_generator()
optimizer = Adam(lr=1e-3)
# choice of loss functions via args
if self.args.improved_loss:
print_log("Focal loss and smooth L1", self.args.verbose)
loss = [focal_loss_categorical, smooth_l1_loss]
elif self.args.smooth_l1:
print_log("Smooth L1", self.args.verbose)
loss = ['categorical_crossentropy', smooth_l1_loss]
else:
print_log("Cross-entropy and L1", self.args.verbose)
loss = ['categorical_crossentropy', l1_loss]
self.ssd.compile(optimizer=optimizer, loss=loss)
# model weights are saved for future validation
# prepare model model saving directory.
save_dir = os.path.join(os.getcwd(), self.args.save_dir)
model_name = self.backbone.name
model_name += '-' + str(self.args.layers) + "layer"
if self.args.normalize:
model_name += "-norm"
if self.args.improved_loss:
model_name += "-improved_loss"
elif self.args.smooth_l1:
model_name += "-smooth_l1"
if self.args.threshold < 1.0:
model_name += "-extra_anchors"
model_name += "-"
model_name += self.args.dataset
model_name += '-{epoch:03d}.h5'
log = "# of classes %d" % self.n_classes
print_log(log, self.args.verbose)
log = "Batch size: %d" % self.args.batch_size
print_log(log, self.args.verbose)
log = "Weights filename: %s" % model_name
print_log(log, self.args.verbose)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)
# prepare callbacks for saving model weights
# and learning rate scheduler
# learning rate decreases by 50% every 20 epochs
# after 60th epoch
checkpoint = ModelCheckpoint(filepath=filepath,
verbose=1,
save_weights_only=True)
scheduler = LearningRateScheduler(lr_scheduler)
callbacks = [checkpoint, scheduler]
# train the ssd network
self.ssd.fit(self.train_generator,
use_multiprocessing=False,
callbacks=callbacks,
epochs=self.args.epochs)
def restore_weights(self):
"""Load previously trained model weights"""
if self.args.restore_weights:
save_dir = os.path.join(os.getcwd(), self.args.save_dir)
filename = os.path.join(save_dir, self.args.restore_weights)
log = "Loading weights: %s" % filename
print(log, self.args.verbose)
self.ssd.load_weights(filename)
def detect_objects(self, image):
image = np.expand_dims(image, axis=0)
classes, offsets = self.ssd.predict(image)
image = np.squeeze(image, axis=0)
classes = np.squeeze(classes)
offsets = np.squeeze(offsets)
return image, classes, offsets
def evaluate(self, image_file=None, image=None):
"""Evaluate image based on image (np tensor) or filename"""
show = False
if image is None:
image = skimage.img_as_float(imread(image_file))
show = True
image, classes, offsets = self.detect_objects(image)
class_names, rects, _, _ = show_boxes(args,
image,
classes,
offsets,
self.feature_shapes,
show=show)
return class_names, rects
def evaluate_test(self):
# test labels csv path
path = os.path.join(self.args.data_path,
self.args.test_labels)
# test dictionary
dictionary, _ = build_label_dictionary(path)
keys = np.array(list(dictionary.keys()))
# sum of precision
s_precision = 0
# sum of recall
s_recall = 0
# sum of IoUs
s_iou = 0
# evaluate per image
for key in keys:
# grounnd truth labels
labels = np.array(dictionary[key])
# 4 boxes coords are 1st four items of labels
gt_boxes = labels[:, 0:-1]
# last one is class
gt_class_ids = labels[:, -1]
# load image id by key
image_file = os.path.join(self.args.data_path, key)
image = skimage.img_as_float(imread(image_file))
image, classes, offsets = self.detect_objects(image)
# perform nms
_, _, class_ids, boxes = show_boxes(args,
image,
classes,
offsets,
self.feature_shapes,
show=False)
boxes = np.reshape(np.array(boxes), (-1,4))
# compute IoUs
iou = layer_utils.iou(gt_boxes, boxes)
# skip empty IoUs
if iou.size ==0:
continue
# the class of predicted box w/ max iou
maxiou_class = np.argmax(iou, axis=1)
# true positive
tp = 0
# false positiove
fp = 0
# sum of objects iou per image
s_image_iou = []
for n in range(iou.shape[0]):
# ground truth bbox has a label
if iou[n, maxiou_class[n]] > 0:
s_image_iou.append(iou[n, maxiou_class[n]])
# true positive has the same class and gt
if gt_class_ids[n] == class_ids[maxiou_class[n]]:
tp += 1
else:
fp += 1
# objects that we missed (false negative)
fn = abs(len(gt_class_ids) - tp - fp)
s_iou += (np.sum(s_image_iou) / iou.shape[0])
s_precision += (tp/(tp + fp))
s_recall += (tp/(tp + fn))
n_test = len(keys)
print_log("mIoU: %f" % (s_iou/n_test),
self.args.verbose)
print_log("Precision: %f" % (s_precision/n_test),
self.args.verbose)
print_log("Recall : %f" % (s_recall/n_test),
self.args.verbose)
def print_summary(self):
"""Print network summary for debugging purposes."""
from tensorflow.keras.utils import plot_model
if self.args.summary:
self.backbone.summary()
self.ssd.summary()
plot_model(self.backbone,
to_file="backbone.png",
show_shapes=True)
if __name__ == '__main__':
parser = ssd_parser()
args = parser.parse_args()
ssd = SSD(args)
if args.summary:
ssd.print_summary()
if args.restore_weights:
ssd.restore_weights()
if args.evaluate:
if args.image_file is None:
ssd.evaluate_test()
else:
ssd.evaluate(image_file=args.image_file)
if args.train:
ssd.train()