forked from JiaQiSJTU/FaithEval-FFLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_main.py
72 lines (59 loc) · 2.32 KB
/
my_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# encoding = "utf-8"
import argparse
import json
from scorers.delta import Delta_Scorer
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from datasets import load_dataset
def main(args):
model = AutoModelForCausalLM.from_pretrained(args.pretrained_name, torch_dtype=torch.bfloat16, device_map="auto",
use_flash_attention_2=False)
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_name)
model.eval()
print("Testing on {}".format(args.dataset_name))
'''load dataset'''
dataset = load_dataset(args.dataset_name, split=args.split).to_pandas()
source_lines = dataset["lead_with_article"].tolist()
target_lines = dataset["text"].tolist()
'''get scores'''
scorer = Delta_Scorer(model=model, tokenizer=tokenizer, pretrained_name=args.pretrained_name,
device=args.device)
s2s_tok_list, lm_tok_list, prefix_tok_list, s2s_tok_list_doc, lm_tok_list_doc = scorer.compute(sources=source_lines,
targets=target_lines,
seperator="TL;DR ")
'''save to files'''
model_name = {"LeoLM/leo-mistral-hessianai-7b": "mistral7b"
}
outputpath = "output/" + str(args.dataset_name.replace("/","-")) + "-fflm-" + model_name[
args.pretrained_name] + f"_{args.split}.jsonl"
outputfile = open(outputpath, "a+")
dataset["s2s_tok_list"] = s2s_tok_list
dataset["lm_tok_list"] = lm_tok_list
dataset["prefix_tok_list"] = prefix_tok_list
dataset["s2s_tok_list_1"] = s2s_tok_list_doc
dataset["lm_tok_list_1"] = lm_tok_list_doc
dataset.to_json(outputfile, orient='records', lines=True, force_ascii=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_name",
type=str,
default=""
)
parser.add_argument(
"--dataset_name",
type=str,
default=""
)
parser.add_argument(
"--split",
type=str,
default="test"
)
parser.add_argument(
"--device",
type=str,
default="cuda"
)
args = parser.parse_args()
main(args)